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Abstract

Distributed model training needs to be adapted to challenges such as the straggler
effect and Byzantine attacks. When coordinating the training process with multiple
computing nodes, ensuring timely and reliable gradient aggregation amidst network
and system malfunctions is essential. To tackle these issues, we propose dSTAR,
a lightweight and efficient approach for distributed stochastic gradient descent
(SGD) that enhances robustness and convergence. dSTAR selectively aggregates
gradients by collecting updates from the first k workers to respond, filtering them
based on deviations calculated using an ensemble median. This method not only
mitigates the impact of stragglers but also fortifies the model against Byzantine
adversaries. We theoretically establish that dSTAR is (α, f )-Byzantine resilient and
achieves a linear convergence rate. Empirical evaluations across various scenarios
demonstrate that dSTAR consistently maintains high accuracy, outperforming other
Byzantine-resilient methods that often suffer up to a 40-50% accuracy drop under
attack. Our results highlight dSTAR as a robust solution for training models in
distributed environments prone to both straggler delays and Byzantine faults.

1 Introduction

Distributed SGD has become a standard way of training large machine learning models due to its
scalability and efficiency in processing vast amounts of data in parallel across multiple computing
nodes. We consider the classical setting with a single parameter server and N workers [1]. Given
X ∈ Rm×d representing m d-dimensional data, y ∈ Zm where each element of y is the discrete label
of the respective row in X , and a loss function F (θ) for the dataset, where θ are the model parameters,
the parameter server wants to find θ∗ that minimizes the loss function F . During each iteration, the
parameter server sends model parameters θ to all workers. Each worker contains a unique subset of
X to parallelize gradient computation. The worker computes and returns the gradient of θ on the
local dataset to the server, which then aggregates the gradients to perform stochastic gradient descent.

While distributed SGD offers enhanced scalability and acceleration, it also introduces fault tolerance
concerns in distributed systems. Workers in a distributed system can be Byzantine faulty. The identity
of such Byzantine workers is also a priori unknown. Byzantine workers may produce wrong or even
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malicious results back to the parameter server due to various reasons, from system failure to malicious
attacks [2]. Averaging, which is the simplest way to aggregate gradients from workers, has been
proven fragile to even one worker being Byzantine [3]. To confer Byzantine resilience in distributed
SGD, many Gradient Aggregation Rules (GARs) have been proposed to allow learning to occur under
a (maximum) number of f Byzantine workers under synchronous and asynchronous settings. The
maximum f that can be tolerated is called the breakdown point, with the optimal breakdown point
being N > 2f [3]. That is, as long as the majority of workers are honest, model training can proceed.
However, these GARs come with their own challenges. In synchronous SGD, the parameter server
needs to wait for slow or unresponsive nodes known as stragglers [4]. In asynchronous SGD, the
server will update the model parameter as soon as any worker returns a gradient to avoid stragglers
[5]. However, this leads to a smaller batch size per aggregation, effectively introducing noise to
the model. Additionally, the server may also receive “stale gradients” computed from outdated θ,
potentially causing the model to converge more slowly or even diverge.

To address the dual challenges of Byzantine resilience and straggler tolerance, we present dSTAR, a
new Byzantine-resilient distributed SGD that selectively waits for k gradients from the fastest workers,
selected using a filter that calculates deviations of worker gradients from an ensemble median (where
1 ≤ k ≤ N and is adaptive). In fault-free settings, the fastest-k SGD (or formally, synchronous
SGD with backup workers) has been shown to achieve optimal performance as synchronous SGD
while mitigating the straggler effect [6]. In the fastest-k SGD, the parameter server only waits for
the fastest k workers per iteration before making a gradient descent update. Other gradients will
simply be dropped. If we assume the response time of each worker is i.i.d, it can be shown that
the fastest-k SGD is equivalent to the single-node batch SGD since the server updates based on a
uniformly random set of gradients. However, the fastest-k SGD is vulnerable to Byzantine attacks.
By definition, Byzantine workers can return gradients anytime they want, whereas the response
time of a non-Byzantine worker can be unbounded. Hence, Byzantine workers can always be in the
fastest k and compromise training. In this paper, we introduce a new fastest-k variant that can be
robust under Byzantine attack as long as the majority of nodes are honest. We show that dSTAR
consistently produces optimal models under different Byzantine attacks, model architecture, and
datasets while other GARs can experience performance drops of 40-50%. Furthermore, since k is
adjustable, dSTAR offers a configurable spectrum from fully asynchronous to fully synchronous
operation. This flexibility allows for tailoring the system dynamics based on specific requirements
and constraints of the deployment environment.

2 Related work

Formally, a GAR is robust to Byzantine attacks if it satisfies (α, f)-Byzantine resilience [3]:

Definition 2.1 ((α, f)-Byzantine Resilience). Let α ∈ [0, π
2 ], f ∈ [0, n]. Let V1, V2, . . . , Vn be

any independent identically distributed random vectors in Rd such that Vi ∼ G, with E[G] = ∇F .
Let B1, B2, . . . , Bf be any random vectors ∈ Rd, possibly dependent on the Vi’s. An aggregation
algorithm A is said to be (α, f)-Byzantine resilient if, for any 1 ≤ j1 < . . . < jf ≤ n, the vector A =
A(V1, . . . , B1︸︷︷︸

j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn) satisfies: 1) ⟨E[A],∇F ⟩ ≥ (1− sin(α))∥∇F∥2 > 0, and 2) for

any r ∈ {2, 3, 4}, E∥A∥r is bounded above by a linear combination of terms E∥G∥r1 , . . . ,E∥G∥rn−1

with r1 + . . .+ rn−1 = r.

Existing GARs ensure (α, f)-Byzantine Resilience by employing robust statistics to identify candidate
gradients to aggregate. Most GARs focus on the fully synchronous setting where all gradients will be
collected before applying the aggregation rule. Examples of synchronous GARs are as follows: a).
AKSEL averages a subset of gradients based on their squared distances to the coordinate-wise median
[7], b). KRUM chooses the gradient with the smallest sum of Euclidean distances with neighbors [3],
c). CGE averages a subset of gradients with the smallest norms [8], d). TrMean discards extreme
values and aggregates the top (N − b) gradients nearest to the median where b is a hyperparameter
[9]. A few algorithms such as KARDAM and Zeno++ focus on the asynchronous setting, where
the model can be updated as soon as any gradient is returned. KARDAM uses a sliding window
based on gradient aggregation history and empirical Lipschitzness of gradients to filter for good
gradients [10]. Zeno++ chooses candidate gradients that lead to a greater descent of the loss value
based on a validation set on the parameter server [11]. Nevertheless, synchronous GARs suffer from
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stragglers and asynchronous GARs may produce suboptimal models. KARDAM can only support up
to one-third of Byzantine workers. Zeno++ also requires manually configuring a gradient threshold,
which can be can be time-consuming to optimize. Zeno++ further has a model error bound that is
influenced by the presence of asynchronous noise, which can be substantial if stale gradients are
utilized more than sparingly. Moreover, asynchronous GARs suffer from “stale gradients” computed
from outdated model parameters.

3 Contributions

Traditional synchronous GARs mandate the collection of all workers’ gradients for each iteration to
ensure convergence because they depend on statistical measures within each iteration. To achieve
optimal convergence without waiting for all gradients, dSTAR focuses on statistics gained from the
training history via a validation set approach similar to Zeno++. The parameter server keeps a unique
subset of X as the validation set locally and computes its validation gradient to compare against
incoming gradients. Unlike traditional approaches, dSTAR determines a filtering threshold dynami-
cally based on the historical ensemble median. dSTAR further achieves optimal time complexity and
breakdown point as shown in Table 1. The key contributions of our work include: 1). Proposed a new
SGD that addresses the straggler effect by waiting for only the k fastest gradients with a dynamically
configured filtering threshold while being robust against Byzantine attacks; 2). Showed empirically
that the SGD can consistently produce an optimal model; 3). Showed theoretically that the SGD has
a linear convergence rate and is Byzantine-resilient.

Table 1: Comparison of different gradient aggregation rules
Method Time Complexity Breakdown Point
Average O(Nd) f = 0
AKSEL O(Nd) n > 2f
TrMean O(Nd) n > 2f
KRUM O(N2d) n > 2f + 1
CGE O(N(d+ logN)) n > 2f
dSTAR O(Nd) n > 2f

4 Assumptions

A1 (Unbiased gradients with bounded variance) The proposed gradient gi from the set of honest
workers Sh are d-dimensional vectors and unbiased estimates of the true gradient and have
bounded variance:

∀i ∈ Sh, gi ∼ G,E[G] = ∇F,E[Gj−∇Fj ]
2 = σ2

j , E∥G−∇F∥2 = E

d∑
j=1

[Gj−∇Fj ]
2 = dσ2

A2 (Lipschitz gradients) The loss function F is Lipschitz continuous with L > 0:

∀θ1, θ2, ∥∇F (θ1)−∇F (θ2)∥ ≤ L ∥θ1 − θ2∥

A3 (Bounded gradients) The gradients gi from honest workers and gv from validation set are all
upper bounded by V , the validation set gradient is also lower bounded by V ′ [11]:

∥gi∥2 ≤ V, V ′ ≤ ∥gv∥2 ≤ V, 0 < V ′ ≤ V

5 Algorithm

We present our new algorithm with its theoretical analysis. Algorithm 1 in the Appendix describes
the full pseudo training loop code. dSTAR aggregation involves evaluating each received gradient
against two key metrics calculated from the validation gradient derived from the parameter server’s
validation set: the dot product and the squared Euclidean distance. Unlike Zeno++, which requires
manually configuring a threshold, dSTAR compares both values against the values calculated using
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the historical median. The median in a system with optimal breakdown point is robust to Byzantine
attack [12]. During the first iteration, we default to aggregate the median of all gradients (i.e. a fully
synchronous iteration using MEDIAN GAR) since history is unknown. This procedure serves as a
warm-up phase for the filtering of subsequent iterations.

During each subsequent iteration t, given an incoming gradient gti and the local validation set
gradient gtv, the server computes normalized Euclidean distance sti =

∥gt
i−gt

v∥
2

∥gt
v∥

and dot product

dti =
〈

gt
i

∥gt
v∥
,

gt
v

∥gt
v∥

〉
. If sti is less than or equal to the normalized Euclidean distance calculated

using the historical median gradient and validation set gradient and dti is greater than or equal to the
normalized dot product calculated using the historical median gradient and validation set gradient,
gti is added to an accepted list. The collection phase stops once k gradients are accumulated or all
workers have responded. Since gradients can vary significantly in magnitude across iterations, we
included normalization in the calculation for Euclidean distance and the dot product to maintain
a consistent scale relative to the validation gradient when evaluating the incoming gradients. The
accepted gradients are then averaged to calculate the aggregated gradient gtagg = 1

k

∑k
j=1 g

t
acceptedj

,
and the model parameters are updated accordingly: θt+1 = θt − ηgtagg. In experiments, we show that
by simply using the first iteration median gradient and validation gradient as this historical threshold,
dSTAR already reaches top performance. In theory, extending the warmup period to more rounds may
improve performance further.

5.1 Time complexity

Calculating Euclidean distance and dot product are both O(Nd). For the first iteration, finding
the median using quick select is also O(N) [13]. For all subsequent iterations, the algorithm
simply retrieves the recorded median values and evaluates each incoming gradient against these
metrics. Hence, the total time complexity for this algorithm is O(Nd). In practice, the effective time
complexity is often lower than this theoretical upper bound as k < N . Notably, dSTAR has a much
lower time complexity than methods like KRUM (O(N2d)), which requires pairwise comparisons
among gradients, and CGE (O(N(d+ logN))), which requires sorting N gradients per iteration.

5.2 Byzantine resilience analysis

We show that dSTAR is (α− f)-Byzantine resilient. First, it is important to point out the robustness
of the median. For a sequence of higher-dimensional vectors with the optimal breakdown point, the
coordinate-wise median will always lie within the range defined by the minimum and maximum values
of the honest coordinates for that dimension [12]. Based on this, we illustrate that the aggregated
gradient of each iteration satisfies the following two lemmas:
Lemma 5.1. (Proof in the appendix) Under assumptions A1 to A3, if gt∗ denotes the aggregated
gradient for iteration t, it satisifies:

⟨E[gt∗],∇F ⟩ ≥

(
∥∇F∥ −

√
2(n− f)

k
dσ2(

V

V ′ )
1
4

)
∥∇F∥ (1)

Lemma 5.2. (Proof in the appendix) Under assumptions A1 to A3, if gt∗ denotes the aggregated
gradient for iteration t, it is upper bounded by a linear combinations of E∥G∥r1, ..., E∥G∥rn−1

Given the two lemmas, dSTAR is (α− f)-Byzantine resilient under the optimal breakdown point:
Theorem 5.3. Let gt1, . . . , g

t
n, g

t
v be i.i.d. d-dimensional gradients at iteration t such that gti ∼

G, with E[G] = ∇F and E∥G − ∇F∥2 = dσ2. f of {gt1, . . . , gtn} are replaced by arbitrary
values. The dSTAR function selects and aggregates gt1, . . . , g

t
k where k ≤ n. If n > 2f and√

2(n−f)
k dσ2

(
V
V ′

) 1
4

< ∥∇F∥, then the dSTAR function is (α, f)-Byzantine resilient where 0 ≤
α < π

2 is defined by:

sinα =

√
2(n−f)

k dσ2
(

V
V ′

) 1
4

∥∇F∥
(2)
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Remark 5.4. The condition on the norm of the gradient is standard in Byzantine resilience analysis
[3]. It can be satisfied at least to some extent by computing gradients using mini-batches on workers.
Averaging gradients over a mini-batch divides σ by the squared root of the mini-batch size [14].

5.3 Convergence analysis

Theorem 5.5. (Proof in appendix) Assume F (θ) is L smooth, and there exists a global minimum
θ∗ where F (θ∗) ≤ F (θ) ∀θ, then after training for T iterations, dSTAR has expected error bound:
E
[
F (θ∗)− F (θ0)

]
≤
∑T

t=0−η
V
V ′ ∥∇F (θ1)∥2+O(V +dσ2) where∇F (θt

′
) represents the honest

gradient at certain iteration t′.

6 Experiments

In this section, we detail the empirical evaluation of dSTAR. We evaluated the algorithm and other
synchronous GARs on two standard image classification benchmarks: Fashion-MNIST and CIFAR10,
with LeNet-5 and ResNet18 architectures respectively. We assessed the resilience of each algorithm
by subjecting them to two state-of-the-art Byzantine attacks:

• “Little" [15]: The attack disrupts the median gradient computation by introducing spurious
gradients that cluster around the mean. Specifically, given N workers in which f workers
are Byzantine, the attack: 1). computes the number of required workers for a majority
s =

⌊
N
2 + 1

⌋
− f ; 2). calculates the maximum z-value, zmax, from the standard normal

distribution such that the cumulative probability ϕ(z) < N−s
N ; 3). generates a malicious

gradient gmal = µ+ zmax · σ, using the mean µ and standard deviation σ of non-Byzantine
gradients.

• “Empire" [16]: The attack employs inner product manipulation to break Byzantine-tolerant
GARs. The attack uses the fact that, for gradient descent algorithms to guarantee the descent
of the loss, the inner product between the true gradient and the aggregated gradient must be
non-negative. Hence, malicious gradients can be generated to make the aggregated gradient
point in the opposite direction as the true gradient (gmal = −sµ) where µ is the honest
gradient mean and s is a configurable scaling factor.

We simulate a distributed environment with 25 workers and a Byzantine ratio of 35%. Each worker
contains a unique subset of the dataset, comprising random samples across all classes. Network
delays are modeled using an exponential distribution with rate β. Honest workers have β = 0.2 and
Byzantine workers have β = 0.001. The value of β makes no difference for synchronous GARs
because they need to wait for all nodes, but for dSTAR it makes faulty workers significantly more
likely to be in the fastest k, thereby exposing the vulnerability of vanilla fastest-k algorithm. For
dSTAR, the initial k is set as 8, and the time to aggregate gradients in each iteration will be the
time to accept k gradients or the maximum response time from all nodes if our filter cannot accept
k gradients, in which case dSTAR waits for all nodes to return but only aggregate the accepted
ones. For all experiments, we used the Adam optimizer with an initial learning rate of 0.001. The
preprocessing steps for Fashion-MNIST included converting images into tensors and normalizing
them. For CIFAR10, images are padded on all sides with 4 pixels, randomly cropped into 32 ×
32 pixels, randomly flipped horizontally, and converted to tensors and normalized. Additionally,
for CIFAR10, we implemented a cosine annealing scheduler to adjust the learning rate, with a
minimum rate set at 0.0001. We also utilized Mixup for data augmentation with a parameter α of
0.4. These preprocessing are added to make the fault-free baseline comparable to SOTA for accurate
comparisons.

7 Results

In three of the four experiments, dSTAR achieved top accuracy (see Table 2 and 3). Furthermore,
dSTAR maintains a consistent performance across different Byzantine attacks, whereas other syn-
chronous GARs may have up to 40-50% drop between the two attacks. This uniformity in performance
under various adversarial conditions underscores the robustness and generalized ability of dSTAR.
The performance of dSTAR is particularly notable under the "Empire" attack scenarios, where it is the
only algorithm that converges. The full training curves can be found in the Appendix Figures 1 to 4.

5



Additionally, the goal of designing a fastest-k Byzantine resilient SGD is to mitigate the straggler
effect. It has been shown in Table 4 that the selective waiting strategy for k fastest gradients
significantly reduces the time required for gradient aggregation per iteration. The reduced wait
times can contribute to higher throughput and efficiency, making dSTAR particularly suited for
time-sensitive applications.

The only setting where our proposed algorithm didn’t achieve the best accuracy was on CIFAR10
under the "Little" attack, although the performance is still significantly better than TRMEAN and
KRUM and is only 2% lower than CGE. This can be explained by a tradeoff between accuracy and
speed, as the accuracy will almost surely improve by waiting for more workers at the cost of a longer
waiting time per iteration. Additionally, we default to MEDIAN for the initial iteration, which can
be susceptible to the attack since "Little" was designed specifically for MEDIAN GAR. Choosing
a different synchronous GAR for the initial iteration or having a longer warm-up phase may also
improve performance.

Table 2: Fashion-MNIST accuracies of methods under Little and Empire attacks, including the
fault-free baseline.

Method Little (%) Empire (%) Fault-Free (%)
dSTAR 88.78 88.87 88.86
Trmean 16.55 32.48 89.44
Krum 88.19 40.84 88.22
CGE 88.30 82.44 89.47
Aksel 88.51 75.08 88.67
Average - - 89.65

Table 3: CIFAR10 accuracies of methods under Empire and Little attacks. The dashed columns
indicate that the algorithm failed to converge. The fault-free baseline has an accuracy of 94.33%.

Method Empire (%) Little (%) Fault-Free (%)
dSTAR 91.11 91.60 91.23
Trmean 20.50 11.85 93.72
Krum 76.32 10.00 80.38
CGE 93.45 41.32 94.19
Aksel 92.44 46.62 93.64
Average - - 94.33

Table 4: Average time between iterations for synchronous GARs and dSTAR

GAR Average Time
Between Iterations (s)

Synchronous GAR 7.62
dSTAR 3.79

8 Discussion and conclusion

We introduced dSTAR, a novel Byzantine resilient distributed SGD algorithm that effectively balances
the dual challenges of mitigating straggler effects and defending against adversarial Byzantine attacks
in synchronous settings. The experimental results demonstrated that dSTAR is robust to various
adversarial settings, whereas other synchronous GARs can have performance degradation when
facing different Byzantine attacks. The ability of dSTAR to deliver such results highlights its potential
as a reliable solution for securing distributed SGD processes against an array of threats while ensuring
minimal disruption to operational efficiency.

Future work could involve scaling the experiments to more complex models and datasets to provide
a more comprehensive understanding of the algorithm’s performance and potential adjustments.
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Extending our experiments will help ascertain the generalizability of our findings across various
domains and applications. Moreover, the integration of dSTAR with emerging machine learning
paradigms, such as federated learning, represents a promising research direction as well.
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A Appendix

A.1 Byzantine resilience analysis

First, it is important to point out the robustness of the median. Formally, the median value given the
optimal breakdown point is always bounded by two honest values and is Byzantine resilient. We
restate Lemma 4 from [12] without proof:
Lemma A.1. For a sequence composed of f Byzantine values and n − f honest values
x1, x2, . . . , xn−f , if f ≤

⌈
n
2

⌉
− 1 (the honest values dominate the sequence), then the median

value m of this sequence satisfies m ∈ [xmin, xmax].

For a sequence of higher-dimensional vectors, the coordinate-wise median maintains the same
robustness properties [12]. Specifically, the median for each coordinate will always lie within the
range defined by the minimum and maximum values of the honest coordinates for that dimension.
Following this lemma, we illustrate that dSTAR is Byzantine resilient. For the first iteration, we
default to MEDIAN aggregator which is already Byzantine resilient. For any subsequent iteration t,
we accept a gradient if its normalized Euclidean distance to the validation gradient of iteration t is not
greater than the normalized Euclidean distance of the first iteration coordinate-wise median to the first
iteration validation gradient. If we denote the first iteration coordinate-wise median as gm, the first
iteration validation gradient as g1v , the t-th iteration validation gradient gtv , and an arbitrary gradient
received from worker i during iteration t as gti , then we accept gti if the following two inequalities
hold:

∥gti − gtv∥2

∥gtv∥
≤ ∥gm − g1v∥2

∥g1v∥
(3)

⟨ gm
∥g1v∥

,
g1v
∥g1v∥

⟩ ≤ ⟨ gti
∥gtv∥

,
gtv
∥gtv∥

⟩ (4)

From (3), we have:

∥gti − gtv∥2 ≤
∥gtv∥
∥g1v∥

∥gm − g1v∥2 (5)

Assume all gradients are d-dimensional and come from the same distribution G where
E [Gi −∇Fi]

2
= σ2

i and E∥G−∇F∥2 = E
∑d

i=1 [Gi − gi]
2
= dσ2 , we have:

E∥gm − g1v∥2 = E[
d∑

j=1

((gm)j − (g1v)j)
2]

=

d∑
j=1

E[(gm)j − (g1v)j ]
2

(6)

where (gm)j represents the j-th dimension of the vector. Since gm is the coordinate-wise median
over first iteration gradients, we have (gm)j ∈

[
mincorrect i(g

1
i )j ,maxcorrect i(g

1
i )j
]
. We thus have:

E[(gm)j − (g1v)j ]
2 ≤ E

[
max

correct i

(
(g1i )j − (g1v)j

)2]
≤ E[

∑
correct i

((g1i )j − (g1v)j)
2]

=
∑

correct i

E[((g1i )j − (g1v)j)
2]

= (n− f)E[((g1i )j − (g1v)j)
2]

= (n− f)2σ2
j

(7)
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Thus, we can plug this back to (6) and obtain:

E∥gm − g1v∥2 =

d∑
j=1

E[(gm)j − (g1v)j ]
2

≤
d∑

j=1

2(n− f)σ2
j

≤ 2(n− f)dσ2

(8)

With Assumption A3, this gives us an upper bound for the expectation of (5):

E∥gti − gtv∥2 ≤ E
∥gtv∥
∥g1v∥

∥gm − g1v∥2

≤ 2(n− f)

√
V√
V ′

dσ2

(9)

Now, we begin to prove the Byzantine Resilience of our algorithm.
Theorem A.2. Let gt1, . . . , g

t
n, g

t
v be i.i.d. d-dimensional gradients at iteration t such that gti ∼

G, with E[G] = ∇F and E∥G − ∇F∥2 = dσ2. f of {gt1, . . . , gtn} are replaced by arbitrary
values. The dSTAR function selects and aggregates gt1, . . . , g

t
k where k ≤ n. If n > 2f and√

2(n−f)
k dσ2

(
V
V ′

) 1
4

< ∥∇F∥, then the dSTAR function is (α, f)-Byzantine resilient where 0 ≤
α < π

2 is defined by:

sinα =

√
2(n−f)

k dσ2
(

V
V ′

) 1
4

∥∇F∥
(10)

Proof. We first focus on the condition (i) of Byzantine Resilience. Suppose we denote the final
aggregated gradient during iteration t as gt∗, we want to determine an upper bound on ∥E[gt∗]−∇F∥2.
If Assumption 1 holds, we have:

∥E[gt∗]−∇F∥2 ≤ ∥E
(
gt∗ − gtv

)
∥2

≤ E∥ gt∗ − gtv∥2

= E∥1
k

k∑
j=1

(gtj − gtv)∥2

≤ 1

k2

k∑
j=1

E∥gtj − gtv∥2

≤ 2(n− f)

k

√
V√
V ′

dσ2

(11)

If
√

2(n−f)
k dσ2( V

V ′ )
1
4 ≤ ∥∇F∥, E[gt∗] belongs to a ball centered at ∇F with radius√

2(n−f)
k dσ2( V

V ′ )
1
4 . This implies:

⟨E[gt∗],∇F ⟩ ≥

(
∥∇F∥ −

√
2(n− f)

k
dσ2(

V

V ′ )
1
4

)
∥∇F∥

= (1− sinα)∥∇F∥2
(12)
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So condition (i) of Byzantine Resilience holds when
√

2(n−f)
k dσ2( V

V ′ )
1
4 ≤ ∥∇F∥. Now we focus

on condition (ii). For an accepted gradient gtj at iteration t with validation gradient gtv , there exists a
constant C such that:

∥gtj∥ ≤ ∥gtj − gtv∥+ ∥gtv∥

≤ (
V

V ′ )
1
4 ∥gm − g1v∥+ ∥gtv∥

(13)

∥gm − g1v∥ =

√√√√ d∑
j=1

[(gm)j − (g1v)j ]
2

≤

√√√√ d∑
j=1

max
correct i

[(g1i )j − (g1v)j ]
2

≤

√√√√ d∑
j=1

∑
correct i

[(g1i )j − (g1v)j ]
2

≤
√ ∑

correct i

∥g1i − g1v∥2

≤ C
∑

correct i

∥g1i − g1v∥

≤ C
∑

correct i

∥g1i ∥+ ∥g1v∥

(14)

Putting this back to (13), we have:

∥gtk∥ ≤ ∥gtv∥+ C
∑

correct i

∥g1i ∥+ ∥g1v∥ (15)

Since all terms on the right side are from correct gradients, we can conclude that the norm of
each accepted gradient can be bounded by the norm of honest gradients. By triangle inequal-
ity, ∥gt∗∥ = ∥ 1k

∑
k g

t
k∥ ≤ 1

k

∑
k ∥gtk∥. So E∥gt∗∥r is upper bounded by linear combinations of

E∥G∥r1, ..., E∥G∥rn−1 . Because both conditions are met, we can conclude that dSTAR is Byzantine
resilient.

A.2 Convergence analysis

For iteration t, we denote the k gradients dSTAR collects as gt = {gt1, gt2, ..., gtk} and the validation
gradient is gtv. From our assumptions and Byzantine Resilience proof, we know V ′ ≤ ∥gtv∥2 ≤ V
and ∥gt∥2 ≤ CV for some constant C. Assume F (θ) captures the loss of θ and is L smooth, and
there exists a global minimum θ∗ where F (θ∗) ≤ F (θ) ∀θ, we want to find the error bound for
the expected difference E[F (θT )− F (θ∗)] after training our model for T iterations, which can be
derived using a similar approach as [11].

From smoothness, we have:

F (θt) ≤F (θt−1) + ⟨∇F (θt−1), θt − θt−1⟩+ L

2
∥θt − θt−1∥2 (16)

For gradient descent update, θt = θt−1 − ηgt:

10



F (θt) ≤ F (θt−1) + ⟨∇F (θt−1),−ηgt⟩+ L

2
∥ − ηgt∥2

≤ F (θt−1) + ⟨∇F (θt−1),−ηgt⟩+ Lη2

2
∥gt∥2

≤ F (θt−1) + ⟨∇F (θt−1),−ηgt⟩+ Lη2

2
CV,

(17)

Now we focus on the dot product term:

⟨∇F (θt−1),−ηgt⟩ = ⟨∇F (θt−1)− gtv + gtv,−ηgt⟩
= ⟨∇F (θt−1)− gtv,−ηgt⟩+ ⟨gtv,−ηgt⟩
≤ η∥∇F (θt−1)− gtv∥ ∥gt∥+ ⟨gtv,−ηgt⟩

≤ η

2
∥∇F (θt−1)− gtv∥2 +

η

2
CV + ⟨gtv,−ηgt⟩

(18)

Using triangle inequality, we know:

∥∇F (θt−1)− gtv∥2 ≤ 2∥∇F (θt−1)−∇F (θt)∥2+
2∥∇F (θt)− gtv∥2

(19)

⟨∇F (θt−1),−ηgt⟩ ≤ η∥∇F (θt−1)−∇F (θt)∥2+

η∥∇F (θt)− gtv∥2 +
η

2
CV+

⟨gtv,−ηgt⟩

(20)

From Assumption 1, E ∥∇F (θt)− gtv∥
2 ≤ dσ2:

⟨∇F (θt−1),−ηgt⟩ ≤ η∥∇F (θt−1)−∇F (θt)∥2+

ηdσ2 +
η

2
CV + ⟨gtv,−ηgt⟩

(21)

Using smoothness, we know:

∥∇F (θt−1)−∇F (θt)∥2 ≤ L2∥θt−1 − θt∥2

≤ L2∥ηgt∥2

≤ L2η2CV

(22)

Now ⟨∇F (θt−1),−ηgt⟩ is upper bounded by:

⟨∇F (θt−1),−ηgt⟩ ≤ L2η3CV + ηdσ2 +
η

2
CV + ⟨gtv,−ηgt⟩ (23)

From (4), we know the dot product ⟨gtk, gtv⟩ for each accepted gradient gtk is guaranteed to be lower
bounded by V

V ′ ⟨gm, g1v⟩. We have:

⟨gtv, gt⟩ =
1

k

k∑
j=1

⟨gtv, gtj⟩

≥ 1

k

k∑
j=1

V

V ′ ⟨gm, g1v⟩

=
V

V ′ ⟨gm, g1v⟩

(24)

11



⟨gtv,−ηgt⟩ ≤ −η
V

V ′ ⟨gm, g1v⟩ (25)

⟨∇F (θt−1),−ηgt⟩ ≤ −η
[
V

V ′ ⟨gm, g1v⟩ −
(
L2η2 +

1

2

)
CV − dσ2

]
(26)

Plugging this back to (15), we get:

F (θt) ≤ F (θt−1)− η
V

V ′ ⟨gm, g1v⟩+(
Lη2

2
+ L2η3 +

1

2
η

)
CV + ηdσ2

(27)

F (θt)− F (θt−1) ≤ −η V

V ′ ⟨gm, g1v⟩+O(V + dσ2) (28)

Since (gm)j ∈
[
mincorrect i(g

1
i )j ,maxcorrect i(g

1
i )j
]

and gradients are i.i.d, we have:

⟨gm, g1v⟩ =
d∑

j=1

(gm)j(g
1
v)j

≥
d∑

j=1

(g1i )j(g
1
v)j for some correct i on each dimension

(29)

E⟨gm, g1v⟩ ≥
d∑

j=1

E[(g1i )j(g1v)j ] for some correct i on each dimension

=

d∑
j=1

(∇F (θ1)j)
2

= ∥∇F (θ1)∥2

(30)

By telescoping and taking the expectation of (28) and using the lower bound in (30), after T iterations
we have:

E
[
F (θ∗)− F (θ0)

]
≤

T∑
t=0

−η V

V ′ ∥∇F (θ1)∥2 +O(V + dσ2) (31)
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A.3 Full algorithm

Data: initial parameters θ0, dataset {X, y}, number of workers N , initial k value k0, increase k
threshold τk, batch size nb, Byzantine ratio f , fixed step size η, number of iterations T ,
loss function F

Result: final parameters θT
Initialization:
k ← k0, S ← squared Euclidean distance for first iteration median gi, D ← dot product for first

iteration median gi;
Create worker subsets and validation set Xi, V ̸= Xi for each worker i ∈ [1, N ];
for t← 1 to T do

Step 1: Broadcast current estimate
The server broadcasts the current estimate θt to all workers;
Each worker i:
Receives θt from the server;
if worker i is honest then

Draws random batch x ∼ Xi, computes gi = 1
nb

∑
xi∈x∇F (θt;xi);

else
Computes spurious gradient gi as per Byzantine strategy;

end
Sends gi back to the server;
Step 2: dSTAR Aggregation
The server waits for gradients to be returned;
for each returned gradient gi do

Compute normalized Euclidean distance si and dot product di with respect to the
validation set gradient gV ;

si ← ∥gi−gv∥2

∥gv∥ ;
di ← ⟨ gi

∥gv∥ ,
gv

∥gv∥ ⟩;
if si ≤ S and di ≥ D then

Append gi to the accepted list;
end
if k gradients have been appended then

break;
end

end
gagg = 1

k

∑k
j=1 gacceptedj ;

Update model parameters θt+1 ← θt − ηgagg;
t← t+ 1;

end
Algorithm 1: Byzantine-Resilient Gradient Aggregation
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A.4 Training curves for experiments

Figure 1: Fashion-MNIST with “Empire" attack

Figure 2: Fashion-MNIST with “Little" attack
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Figure 3: CIFAR10 with “Empire" attack

Figure 4: CIFAR10 with “Little" attack
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