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ABSTRACT : e

Queue disciplines studied in the past have not given the system
designer sufficient freedom with whi®h to alter the relative waiting
times of the various priority groups. In this paper, results are derived
for a delay dependent priority system in which a unit's priority is in-
creased, from zero, linearly with time in proportion to a rate assigned
to the unit's priority group. The utility of this new priority structure
is that it provides a number ofdegrees of freedom with which to manip-
ulate the relative waiting times for each priority group.

INTRODUCTION

A number of queue disciplines have been studied in the past (see Saaty [5] for a sum-
mary of such studies). Whereas these investigations provide a careful and useful analysis,
many of the queue disciplines themselves suffer from the lack of a set of adjustable parame-
ters. Specifically, once the arrival and service rates for all priority groups are specified,
then the set of average waiting times are determined exactly, and the system designer has no
degrees of freedom left with which to adjust the system's behavior. The delay dependent pri-
ority system described in this paper provides a set of variable parameters, bp , which are at
the disposal of the designer and which allow him to adjust the relative waiting times of each
priority group to a large degree.

THE MODEL

We consider a total of P different priority groups. Units from group p (p=1,2,...,P)
arrive in a Poisson stream at rate A_ units/sec; each unit from priority class p has a re-
quired service time selected from an exponential distribution with mean 1/ p.p. We definet

1%
(@) A= Z Aps
13
(2) Vp = le /YRS

*This work was done while the author was employed at Lincoln Laboratory (operated with sup-
port from the U.S. Army, Navy, and Air Force), Massachusetts Institute of Technology,
Cambridge, Massachusetts.,

fThese quantities are usually specified by the user and not by the designer of the system.

fNote that W, is the expected time to complete service on the unit found in the service facility
(see Cobham [1]).
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(3) Pp = Ap/up,\
P
(4) p=>~/u=Z Pp s
p=1
and
P
(5) W, = Z P/ bg
p=1

We further define

W_ = Expected value of the time spent in the queue for a unit from group p (steady
state waiting time).

The delay dependent queue discipline is such that when a unit from the pth

enters the queue at time T (say), it is assigned a number bp, where

priority group

(6) 0=b;=by=...Sbp.

The priority qp(t) at time t associated with that unit is calculated from
=(t-T

(7) ap(t) = (t-T)by,

where t ranges from T until the time at which this unit's service is completed. Whenever the
service facility is ready for a new unit, that unit with the highest instantaneous priority qp(t)
is then taken into service. Whenever a tie for the highest priority occurs, the tie is broken by
a first come first served rule. Contrary to the usual convention, a unit with priority q(t) is
given preferential treatment over a unit with priority q'(t) where q(t) >q'(t). We note that
higher priority units gain priority at a faster rate (bp) than lower priority units.

Figure 1 shows an example of the manner in which this priority structure allows inter-
action between the priority functions for two units. Specifically, at time T, a unit from priority
group py arrives, and attains priority at a rate equal to (t-T) bpl . At time T', a different

ap (1= (1=T o,

qp(f)

Figure l - Interaction between priority
functions for the delay dependent pri-
ority system
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unit enters from a higher priority group py; that is, Py > py- When the service facility be-
comes free, it next chooses that unit in the queue with the highest instantaneous priority. Thus,
in our example, the first unit will be chosen in preference to the second unit if the service
facility becomes free at any time between T and T0 (in spite of the fact that the first unit is
from a lower priority class); but, for any time after To’ the second unit will be chosen in
preference to the first.

MAIN RESULTS ’

For the delay dependent priority system, without pre-emption, we give two derived
forms for Wp; one is a recursive form in terms of the Wi for the lower priority units, and
the other more complicated expression is the solution of the recursive equations.

THEOREM 1:*
For the delay dependent priority system with no pre-emption, and 0= p <1,

p-1
Wo/(L-p)] = ) pyWi[1-(o;/b))]
i=1

(8) Wi
P P
1- ) pli-y/b)]
i=p+1
or
p-1
) W, = [W,/(1-p)](1/D) |1+ J. FU)F 9. K|,
=1 0<1;<i, : ]
<...<ij<p
where
P
(10) Dy =1- ), pli-(y)]
i=p+1
and
(11) Fk(n) Lok (pk/Dk) [1- (bk/bn)] .

It is interesting to note the extremely simple dependence that W
(namely, only on their ratios).
For the case of the delay dependent priority system with pre-emption;k we give a recur-

sive form for Wp in terms of the Wi for the lower priority messages.

p has on the parameters bi

THEOREM 2:T
For the delay dependent priority system with pre-emption, and for 0 = p< 1,

*See Saaty [5] for a definition of pre-emption.
TSee the Appendix for proof of this theorem.
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~

p- p-1

W_/(1- )] + Z (py/ 1) [1- (o /)] - Z(p/u)[l (by/b)1- ) oW [1-(by/by)]
5 i=p+1 1=1 i=1
(12) Wp— s
1- ) pf-(y/0)]
i=p+1

It is interesting to note the behavior of W_ as a function of p for these two disciplines
and to compare this to the head of the line priority system (see Cobham [1]). The curves in
Flgures 2-5 have been prepared to illustrate this behavior. The assumptions are that Ap =1/P,

=L, and b_ = 2p— (p=il;,2; ., P). These special cases do not reveal the entire struc-
ture of the Wp , but they do give one an intuitive feeling about their general properties; the
obvious reason for choosing these special values is that they are easy to plot. Figures 2 and 3
show I.LWp for the head of the line priority system, and Figures 4 and 5 show uW_ for the
delay dependent priority system. The curves shown are for P = 2 and P = 5. In addition, the
case P =1 is shown as a dashed curve in all the figures; clearly, for P =1, qu(p) =p/(1-p)
for all* of the disciplines, and so corresponds to the strict first come first served discipline.
As such, the P = 1 case serves as a basis of comparison for all the curves.

Observe that, in general, the curves for the pre-emptive case are more widely spaced
than the corresponding curves for the nonpre-emptive case. Further, one notes that, in
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Figure 2 - uWp(p) for the head of the line pri-
ority system with no pre-emption. a) P=2,
b):HP. 245,

%*The Conservation Law (see Kleinrock [2]) shows why pW (,o) for the case P = 1 must be inde-
pendent of queue discipline.
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Figure 3 - p.Wp(p) for the head of the line pri-
ority system ~with pre-emption. a) P =2,
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Figure 4 - pr(p) for the delay dependent pri-
ority system with no pre-emption. a) P = 2,
b).: P.5.5,
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Figure 5 - qu(,o) for the delay dependent pri-
ority system with pre-emption. a) P=2,
b) P-= 5,

general, the curves for the head of the line priority system are more widely spaced than the
corresponding curves for the delay dependent priority system. In addition, because of the
rigid nature of the head of the line priority. system, some of the curves for W_ extend beyond
the value of p = 1. That is, although the service facility is saturated, only the lower priority
groups experience an infinite expected waiting time, whereas some of the higher priority groups
have a finite expected wait under this overload condition. The delay dependent priority system,
however, forces a fairly strong coupling (or interaction) among all the priority groups. Specif-
ically, if any unit remains in the queue for an extremely long time, it will eventually attain an
extremely high value of priority; as such, it must eventually get served before any newly en-
tering units. Thus, if any group experiences an infinite expected waiting time, then they all do.
This effect causes all the Wp curves to have a pole at p = 1. 3

CONCLUSION

In reviewing the two theorems of this paper, we find it appropriate to state the important
conclusions once again. Specifically, we would like to emphasize the versatility inherent in a
delay dependent priority structure. By this we mean that a system designer has at his disposal,
a whole set of parameters (the set b_) with which to adjust the relative waiting times, Wp. He
must have this freedom if he intends to satisfy, or come close to satisfying, a set of specifica-
tions given him by the intended user of the system. In general, the user will specify the traffic
to be handled; i.e., he will specify the number P, of priority groups, the average arrival rate,
Ap , and average service time 1/u p for each of these groups.* Then the user will specify a

S o P
%Note that after >‘p and 1/,uP are specified, then p = ) AP/“P is also specified.
p=1
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~

set of relative Wp that he desires from the system. The additional number of degrees of free-
dom that the designer has from the set b_ is just what is necessary to satisfy the user's
demands. Without this freedom (as in the head of the line priority system), the set Wp is fully
determined, and the designer cannot alter their relative values. Even with the b_, certain
limitations exist: firstly, the function WP cannot lie below WP for the head of the line priority
system since in such a system, the Pth group is given complete priority over all other groups,
and members from this group interfere only with each other; secondly, the Conservation Law

(see Kleinrock [2]) clearly puts a constraint on the absolute values of the set Wp 2

APPENDIX

PROOF OF THEOREM 1:
Consider the arrival of a type p unit, which we refer to as the tagged unit. Upon its
arrival, the expected number, E(ni), of type i units present in the queue, is (see Little [3]),
E(ni) =MW
Let fip represent the expected fraction of these type i units which receive service before the
tagged unit does. As usual, Wp will represent the expected value of the time that the tagged

unit spends in the queue. We know, by assumption, that the expected number, E(mi), or type i
units which arrive during the time interval Wp silg

E(mi) =N Wp ;
That this is so is obvious from the definition of )\i as the average number of type i arrivals
per second, in addition to the independence of arrival times. Let g represent the expected
fraction of these type i units which receive service before the tagged unit does.

With these observations and definitions, we are able to write down a set-of P simul-
taneous equations, one for each value of p, as follows:

P P '
(A1) Wo e Mge Z Oy Witin/ ) + Z O Wy 855/ 1) -
fwl o1

The fypical term in these sums is of the form: the expected number of type i units which get
service before the tagged unit does, times the quantity 1/ K4 which is the expected value of the
service time for a type i unit.

Now from the definition of the f.. and gij , as well as the imposed queue discipline, we

1)
note that

f. =21 forall i=p
and

gip=0 forall 1=p.

Using this information and solving for Wp in Eq. (Al), we obtain
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Figure Al - Diagram of priority,
qp(t), for obtaining &ip W
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W Pt Let us now derive an expression for

g 8ip * Once-again consider the arrival of a p

type unit, the tagged unit, at time 0. Since
is its expected waiting time, the expected
value of its attained priority at the expected
time it is accepted for service is prp , as

shown in Figure Al. In looking for 8ip > we must calculate how many i type units arrive on
the average, after time 0 and reach a priority of at least b_W_ before time W_. It is obvious
from the figure that type i units which arrive in the time interval (0, Vi) will satisfy these
conditions. Thus, let us calculate the value of Vi . Clearly,

and so

bW, = by (W, - V)

Vi = Wo[1-(b/b)].

Therefore, with an input rate of N for the type i units, we find that

and so

giving

We now prove that fip = bi/bp for i< p.
arrives at time t = 0, and spends a total time t

gip B(m;) =2, V;

giphi Wp = A Wy [1- (/b))

&ip.= 1- (bp/bi) for allisi 2 p.

Consider that a type p unit, the tagged unit,
in the queue. Its attained priority at the time

of its acceptance into the service facility will be bptp , as shown in Figure A2.

bt
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Figure A2 - Diagram of priority,
qp(t), for obtaining fip
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Upon its arrival, the tagged unit finds n, type i units already in thg queue. Let us
consider one such type i unit, as shown in the figure, which arrived at t = -T1 . In looking for
fip , we must calculate how many type i units arrive before t = 0 , and obtain service before
the tagged unit does. It is obvious from the figure that a type i unit which arrives at time
- T1(T1 > 0) and which waits in the queue a time Wi(Tl) such that T1 = Wi(TI) =T+ T, will
satisfy these conditions. Obviously, the reason that Wi(Tl) must not exceed T1 + T2 is that
for wi(Tl) > T+ T, that i type unit will be of lower priority than the tagged unit, and will
therefore fail to meet the conditions stipulated above. Note that T2 may exceed t_, but t}lis
does not violate our conditions since in that case the i type unit must surely be serviced before
the tagged unit is serviced.

Therefore, let us first solve for T2 . Clearly,

b, Ty = by(T +T

p 2)

and so
Ty = [by/(b,-b)] T,
or

Ty + Ty = [by/(b,-b)] T, .

It is clear that the expected number, E(ni) fip , of i type units which are in the queue at t = 0
and which also obtain service before the tagged unit does, can be expressed as

= ,
(A3) EMn,)f, = NPt =wi(t) = [b /(b -b,)]tl dt,
i’"ip 5 1= % 1 i e |

where )\i dt is the expected numbkr of i type units that arrived during the time interval
(-t - dt, -t) and where P {t = “_ri(t) = [bp/(bp -bi)]t is the probability that a unit which
arrived in that interval spends at least t and at most [bp/ (bp —bi)]t seconds in the queue.

Equation (A3) can be written as .
0 ©
Ey)f;, = % f [1- P (w =t)]at -2 f [1 - P, {wi = [bp/(bp-bi)]tH at
: 0

(00] 0
iy l [1 - Po(w; = 0)]dt - A [1 - (oy/b))] JO [1- P (w; =0)]do,

where we have set

o = [b,/(b,-b)]t.
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Now, as is well-known* (for w; a nonnegative random variable),

0
E(Wi) = f [l-Pr(wiS x)] dx
0

and since, in our notation W; = E(wi), we obtain
E(ni)fip =A Wien [1- (bi/bp)]wi
or
fip = [AiWi/E(ni)](bi/bp).
But we know that

E(@m,) = ,W,,

and therefore

fip = bi/bp for all i ='p.

Having derived expressions for fi

and gip , we may now substitute for these quantities
in Eq. (A2), and obtain,

P

P -1
W Z oW, + ; piwi(bi/bp)
Woa i=p i=1

P P

1= ) oy [1-(oy/m)]
i=p+1

o

1}

If we now make use of the Conservation Law (see Kleinrock [2]) we can rewrite the above
equation as

p-1
[Wo/(L=0)] = ) pW;[1=(b;/b)]
W i=1
p P :
1~ Z pi[l-(bp/bi)]
i=p+1

which establishes Eq. (8) of Theorem 1.
Let us now show that Eq. (9) is indeed the solution to the set of recursively defined W
as expressed in Eq. (8). We proceed to show this by an inductive proof.

p’

*See, for example, Morse [4], p. 9.
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First, for p = 1, we get, from Eq. (9)

W, = [W/(1-p)] (1/Dy) = [W /(1-p)] : :

P
- Z Py [ (bl/bi)]
i=2

which checks with the value of W1 obtained from Eq. (8).
For p =2, we get from Eq. (9)

P
1 -9p4[1-(by/by)] Zpl 1-(by/b;)]
i=2

P
1- Zspl - (by/b))]
1=

Wy = [W,/(1-p)](1/Dy) [1+F(2)] = [W /(1-p)]

which checks with the value of W2 obtained from Eq. (8).

Now, as is usual in an inductive proof, we assume that the solution holds for all p =k,
and we show that this implies that the solution is correct for p = k+1. Let us therefore write
down the expression Wk+1 from Eq. (8), using the fact that Wk, w
evaluated from Eq. (9):

k-1’ ...,W1 may be

k
Wyepq = Wo/(1=](1/Dy, ) J1- ) gy [1-(by/by,)](1/D)) 1+Z a5 02) -+ F 0
i=1 j=1 0<1<
<1J<1

Kk ful
= [W,/(1-p)](1/Dy, ,) 1+ZFi(k+1) 1+Z Z Fil(iz)...Fi_(i)
i=1 j=1 0<ij<... 4
<i;<i -

where we have taken the liberty of using the notation of Eqs. (10) and (11). Now, comparing
this last equation with the expression obtained for Wk = from Eq. (9), we see that the induction
proves the result if the following identity exists:

k
ZF(k+1) 1+Z N ) - FLO) m o1 it £ B e - Bk s
j=1 0<i< jul: 0, iz ]
<11<1 <iy<kel

It is clear that both sides of this equation involve n-tuples of the F factors. Therefore, in
order to prove the validity of this expression, let us show that the same sets of n-tuples appear
on both sides of the equation. First, for n = 1, we require that
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~

k k
) Fken) = ) Fy (kv ),
f=i i=1

which is obviously correct. Now for n > 1, we require that the n-tuples agree, and so, writing
only the n-tuples for each side of the equation, we have

k >
) Fyke) = Ry oy O = & Fy i) oy ()
i=1 0<i.1<... 0<il<"'

<1 i< <i, <k+1

If, on the right hand side of this last equation, we separate out the summation involving in , as
follows,

k
o F,(ip) ... F, (k+1) = ) F; (ke ) R By ) es il el
: 1 n : n $ 1 n-1
0<11<... 1n=1 0<11<...
<i, <kl Sl sl

we find that the n-tuples do indeed agree (i.e., let b= i in this last expression). Thus, we
have proven the validity of Eq. (9) and this completes the proof of THEOREM 1.

PROOF OF THEOREM 2: _

Here, we use notation very similar to that used in the proof of Theorem 1 except that all
quantities will refer to time spent in the queue plus service facility, instead of just in the queue
as was the case in Theorem 1.

Following through with almost identical arguments, we arrive at the following ex-
pressions (where TeW 4 (l/ui)):

E@m) = T,
E(mi) =N Tp,
bi/bp i=np,
fip =
1 1=D,
0 i=p,
and 8ip =

[1-,/b)] iz,

where n, is now defined as the total number of type i units which were present in the system
(queue plus service facility) when the tagged unit arrived, and m, is defined as the total number
of type i units which enter the system while the tagged unit is in the system.
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The expression for Tp is therefore

B 1y

= (1/pp) + Z @y Ty /1) + Z @ Tp 81/ 1) -
i=1 i=1

This equation is obtained from reasoning quite similar to that used in forming Eq. (Al). Now,
using the expressions for fip and gip , and also remembering that Wi + 1/ By = Ti we obtain,

9

P P
W, = T, - (k) = Zl oy Wy + (1/1)] (by/b) + [W,/(1-p)] - Zl py Wy + (1/1)]
1= 1=
15
+ ) Wy + (/)] [L- (b /b)],
i=p+1

where we have also made an application of the Conservation Law in this last expression. Solv-
ing for W_, and collecting terms, we obtain finally,

p,
p=1 p-1
Wo/(1-0)] + Z (py/ o) [1= (o /0] - D (0y/11) [1- (oy/b )] - pr 1- (by/b)]
W= i=p+1 i=1
p_ : P 2 )
1- ). pli-loy/b)]
i=p+1

which is the same as Eq. (12) and so proves THEOREM 2. Note that, E(n), the expected num-
ber of units in the system, is

E(n) =Z E(n)—ZApr .

p..
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