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 A B S T R A C T

With the rapid expansion of networks and increasing traffic, optimizing network performance has become 
increasingly important, especially in balancing two competing objectives: increasing throughput and decreasing 
delay. This paper adopts the Power metric to address this tradeoff, extending the analysis to a general multi-
flow model and examining the influence of different queueing disciplines. We introduce three forms of power 
metrics–individual power, sum of powers, and average power–to capture performance in a multi-flow 
context. Individual power optimizes each flow’s end-to-end performance, while sum of powers and average 
power provide a system-wide perspective. These three power metrics are analyzed and optimized under an 
M/M/1 queueing systems setting, considering two extreme flow discrimination priority disciplines–First-Come, 
First-Served (FCFS) and Head-of-Line (HOL)–to capture their discriminatory effect on response time while 
maintaining power optimization. This work is a first step in examining the tradeoff of throughput and delay in 
queueing systems from various perspectives and across different priority group disciplines. The optimization 
results aim to provide theoretical insights and guidance for system designers in performance optimization.
1. Introduction

Throughput and response time (delay) have been two of the most 
important metrics when optimizing network performance. As networks 
rapidly expand and traffic continues to rise [1,2], optimizing these two 
performance metrics has become increasingly important. The desire 
for faster speeds (higher throughput) and quicker responses (lower 
response time) reflects our natural inclination to access information as 
quickly as possible. However, achieving both simultaneously presents 
a challenge: throughput and response time exhibit a tradeoff.

Fig.  1 visually represents this tradeoff. The 𝑥-axis represents
throughput (denoted by 𝜆), which signifies the network’s transmission 
rate, measured in packets (bytes) successfully delivered per second. 
The 𝑦-axis depicts mean response time (denoted by 𝑇 (𝜆)), the average 
time (sec) taken for a packet to travel from source to destination. To 
quantitatively optimize the intricate balance between throughput and 
mean response time, we utilize the Power metric (denoted as 𝑃 ). 
The Power metric was originally defined as the ratio of throughput 
to mean response time, 𝜆

𝑇 (𝜆) . In this work, we use a slightly different 
definition for the power metric, normalizing both the numerator and 
denominator, leading to: 

𝑃 =
𝜌

𝜇𝑇 (𝜌)
(1)
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E-mail addresses: chloe16808@ucla.edu (M.-J.C. Tsai), lk@cs.ucla.edu (L. Kleinrock).

Fig. 1. The tradeoff between throughput and mean response time.

Here, the numerator is the well-known utilization factor, 𝜌 = 𝜆
𝜇 . It 

is the throughput 𝜆 normalized by the average service rate 𝜇, where 
throughput, represented by 𝜆, is equal to the average input arrival rate 
under the assumption of a no-loss system. For system stability, 𝜌 < 1
is required. The denominator, 𝜇𝑇 (𝜌), is the mean response time 𝑇 (𝜆)
normalized by the average service time per packet, 1𝜇 . We will explain 
the normalization in detail in Section 2. We adopt this form of the 
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Fig. 2. An example of current networks: multiple flows, multiple hops,1 different 
routes, and different queueing disciplines.

power metric to serve as our optimization goal. A higher Power metric 
signifies a network that efficiently utilizes resources, achieving both 
high throughput and low response time.

Introduced in [3] and further investigated in subsequent works [4–
6], the Power metric has garnered attention for its potential in net-
work congestion control [7]. Its unique strength lies in capturing 
both throughput and mean response time, providing a holistic view 
of network performance. Furthermore, the Power metric aligns with 
the intuitive principle of deterministic reasoning: keep the pipe just full, 
but no fuller [7], as it applies to stochastic systems. By maximizing the 
Power metric, we aim to strike a balance between high throughput 
and low response times, ultimately contributing to effective network 
congestion management.

Previous research on power [3–7] has primarily focused on a single
flow, typically involving one hop or multiple hops. However, contem-
porary networks, as illustrated in Fig.  2, presents a level of complexity 
that far exceeds these simplified scenarios. In this intricate network 
environment, several factors come into play.

First, the presence of  multiple flows navigating diverse routes and 
encountering various bottlenecks introduces a heterogeneity, with each 
flow serving distinct purposes and requiring a nuanced understand-
ing. Moreover, network traffic is often divided into different classes, 
each following specific quality of service (QoS) standards [8,9] and 
assigned different scheduling priorities. For instance, multimedia ap-
plications like two-way video streaming and VoIP [10,11] require low 
latency and high throughput, necessitating prioritization over bulk data 
transfers that can tolerate higher delays but require high through-
put. Frameworks like DiffServ (Differentiated Services) [12,13] and 
IntServ (Integrated Services) [14] address these needs by enabling 
differentiated service levels and employing mechanisms like priority 
queueing [15–17].

Adding to the complexity, networks employ congestion control at 
two critical points: end-to-end control and router-based control.
These approaches present distinct optimization challenges due to their differ-
ent information access and objectives. End-to-end control, implemented 
in TCP protocols with diverse algorithms like Tahoe [18], Reno [19,
20], Vegas [21], Cubic [22], DCTCP [23], Timely [24], BBR [25], 
HPCC [26], and Swift [27], react to congestion encountered for a given 
flow along its path, aiming to achieve a balance between maximizing 
its own throughput, but without complete knowledge of other flows. In 
contrast, router-based control adopts a more holistic perspective, hav-
ing knowledge of all flows traversing through that router. To achieve an 
overall efficient allocation of resources, router-based control must dif-
ferentiate between various flows and strive for ‘‘good’’ performance for 
all users. Techniques utilized include congestion signaling (ECN [28] 
and XCP [29]), active queue management (RED [30] and CoDel [31]), 

1 In this paper, we focus on one-hop analysis, paralleling the bottleneck, 
and do not consider the effect of multiple hops.
2 
and router buffer sizing [32] to address the overall performance of all 
flows.

Given these complexities, our objective in this paper is to use the 
power metric to navigate the network landscape to achieve an optimal 
balance between throughput and response time. Our analysis must 
look into the intricacies introduced by multiple flows and various 
queueing disciplines, accounting for both end-to-end and router per-
spectives. We study multiple-flow systems with 𝑛 flows. The 𝑖th flow 
(𝑖 = 1, 2.,… , 𝑛) carries a flow of 𝜆𝑖 packets/sec at a utilization factor of 
𝜌𝑖 =

𝜆𝑖
𝜇 .

This research aims to extend power analysis to current net-
work environments, deriving high-level insights for system de-
signers. We develop a comprehensive mathematical analysis that ac-
commodates multiple flows and incorporates various aspects of today’s 
network complexity. Our analysis will focus on two core aspects:

1. Performance: Characterized by different transformed versions 
of power for multiple flows.

2. Flow priority discrimination: Represented by different func-
tions of mean response time as a function of throughput for 
priorities in different queueing disciplines.

This research represents an initial step towards a comprehensive un-
derstanding of the interrelationships between these aspects, how they 
affect each other, and how to optimize and balance them. In this paper, 
we focus on the performance optimization for different optimization 
metrics based on different congestion control algorithms using queue-
ing disciplines with different levels of flow discrimination. To be more 
specific, we define three forms of power:

1. Individual Power of the 𝑖th flow 𝑷 𝒊 =
𝜌𝑖
𝜇𝑇𝑖

2. Sum of (Individual) Powers 𝑷 𝐬𝐮𝐦 =
∑𝑛

𝑖=1 𝑃𝑖

3. Average Power 𝑷 𝐚𝐯𝐠 (see Eq.  (58))

We then optimize each of these three performance power metrics for an 
M/M/1 queueing system with multiple flows, finding the set of optimal 
utilization factors for each flow 𝜌∗1 , 𝜌∗2 ,… , 𝜌∗𝑛

2 and their corresponding 
optimal power values. We examine these optimizations under two 
queueing disciplines: FCFS (i.e., with minimal flow discrimination), and 
HOL [15–17] (i.e., with maximal flow discrimination). A more general 
discussion on flow discrimination in other queueing disciplines will be 
addressed in future papers.

2. Background

2.1. The single-server queueing system

In its most simplified form, we choose to model a computer network 
system as a single server queueing system where packets arrive at a rate 
𝜆 (packets/second), undergo processing within the system, and depart 
as in Fig.  3.

Fig. 3. Model of a computer network system as a loseless single-server queueing 
system. 

2 Throughout this paper, the use of superscript * indicates an optimized 
value.
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Though this is an idealized and simplified representation, this 
model remains a valuable tool for understanding and analyzing various 
aspects of network performance, particularly the tradeoff between 
throughput and delay. We use the following notation to describe the 
key parameters of this system:

• 𝑡: Mean inter-arrival time of packets, measured in seconds.
• 𝜆: Average arrival rate of packets into the system, measured in 
packets per second and calculated as 𝜆 = 1

𝑡 . Given that we 
consider a no-loss system, the number of packets going in equals 
the number of packets going out. Hence, 𝜆 is also considered as 
throughput in our model.

• �̄�: Mean service time of a packet, measured in seconds.
• 𝜇: Average service rate of the system, indicating the average 
number of packets that can be processed per second, calculated 
as 𝜇 = 1

�̄� .
• 𝜌: Utilization factor (also known as efficiency), representing the 
proportion of time the server is actively engaged in serving pack-
ets. It is computed as 𝜌 = �̄�∕𝑡 = 𝜆∕𝜇, with the requirement that 
0 ≤ 𝜌 < 1 for system stability.3

• T: Average (mean) response time (delay), indicating the aver-
age duration (measured in seconds) a packet spends within the 
system, inclusive of both waiting time and service times.4 Specif-
ically, 𝑇 = 𝑊 + 𝑥, where 𝑊  denotes the average waiting time in 
queue. This metric typically varies as a function of input traffic, 
hence we use the notation T(𝜆). Alternatively, we may denote 
it as a function of utilization factor, T(𝜌) with the input traffic 
normalized by the service rate.

2.2. The power metric

Power is a metric that combines two competing performance mea-
sures, throughput and mean response time (delay), into a single met-
ric5. Kleinrock, in [5,7], proposed an alternative definition of power 
that normalizes both throughput and mean response time. This nor-
malized power is expressed as: 
𝑃 =

𝜌
𝜇𝑇

(2)

Here, the throughput is transformed into the utilization factor (effi-
ciency) using the equation 𝜌 = 𝜆

𝜇 . The mean response time is nor-
malized by dividing it by the no-load response time, 𝑇 (0), which is 
equivalent to the average service time, 1

𝜇 . This normalization makes 
the power metric dimensionless. We will use this normalized power 
definition throughout this document.

2.3. The maximal power operating point

Our objective is to optimize power in order to increase system 
utilization while keeping mean response time low. This involves finding 
the operating point that yields the maximum power value, 6 sometimes 
referred to as ‘‘the knee point ’’ on the system’s performance curve. 
Before reaching the knee point, increasing system utilization usually 

3 𝜌 < 1 here for all flows to be stable. There are situations of 𝜌 ≥ 1 for HOL 
where only some of the higher priority group flows are stable while the rest 
of the lower priority group flows are unstable. We do not consider those cases 
here.

4 In the remainder of this paper, by any mention of response time (or delay) 
we explicitly intend it to be interpreted as ‘‘mean response time’’ (or ‘‘mean 
delay’’).

5 It was first introduced by Giessler in [3] as the ratio of throughput to 
mean response time, 𝜆

𝑇
. This definition parallels the concept of ‘‘power’’ in 

physics, where power is defined as energy divided by time. In this anal-
ogy, throughput corresponds to energy and mean response time (or delay) 
corresponds to time.

6 Note that the power value must lie in the range 0 ≤ 𝑃 ≤ 1.
3 
improves efficiency without significantly increasing mean response 
time. Therefore, we seek to augment utilization until this knee point is 
reached. Beyond this threshold, however, any further efficiency gains 
lead to a disproportionate rise in mean response time.

For the well-known M/M/1 queueing system  [33], the normalized 
response time is given by 𝜇𝑇 = 1

1−𝜌  and thus the power is 𝑃 =
𝜌
𝜇𝑇 = 𝜌(1 − 𝜌). In [5,7], Kleinrock derived that the optimal utilization 
operating point that maximizing power occurs at 𝜌∗ = 1

2 , where the 
maximum power itself is 𝑃 ∗ = 𝜌∗(1 − 𝜌∗) = 1

4 . For the general M/G/1 
system, where the normalized response time is 𝜇𝑇 (𝜌) = 1 +

𝜌(1+𝐶2
𝑏 )

2(1−𝜌) , the 
power is given by 
𝑃 =

𝜌
𝜇𝑇

=
𝜌

1 +
𝜌(1+𝐶2

𝑏 )
2(1−𝜌)

(3)

Kleinrock derived the optimal operating point for the M/G/1 queueing 
system [5,7], which is achieved when 

𝜌∗ = 1

1 +

√

1+𝐶2
𝑏

2

(4)

3. Model for multiple flows

3.1. Multiple flows system

Our focus in this paper is for multiple flows. The multiple flows 
queueing system we consider is an M/M/1 system illustrated in Fig.  4. 
This will be used throughout this document7. There are 𝑛 independent 
Poisson flows entering the system, with the 𝑖th flow having a packet 
arrival rate of 𝜆𝑖 packets per second. The system service rate is 𝜇
packets per second. Packets length of each flow are independently and 
identically drawn from an exponential distribution where the average 
service time for the 𝑖th flow is 1

𝜇𝑖
= 1

𝜇  seconds. The utilization factor of 
each flow is thus 𝜌𝑖 = 𝜆𝑖

𝜇 . These 𝑛 independent Poisson processes can be 
viewed as a combined Poisson process with total average arrival rate of 
𝜆 =

∑𝑛
𝑖=1 𝜆𝑖 and the total system utilization as 𝜌 =

∑𝑛
𝑖=1 𝜌𝑖 =

∑𝑛
𝑖=1

𝜆𝑖
𝜇 =

𝜆
𝜇 .
When the flows are combined, the system can be seen as a single 

flow. However, we explicitly differentiate each flow here to observe 
the impact of multiple flows when different approaches are applied 
to handle the order of packets from various flows being queued and 
entering service, particularly when different priorities are applied to 
each flow. There are many queueing disciplines and here we focus on a 
family of work-conserving queueing disciplines8, represented by the 
yellow box in Fig.  4. Within this family, first-come, first-served (FCFS) 
represents the least discriminatory discipline, while head-of-line (HOL) 
represents the most discriminatory. FCFS and HOL define the upper 
and lower bounds of flow priority discrimination within this family of 
queueing disciplines.

3.2. Assumptions and simplification

The model in Fig.  4 resembles a single flow system but focuses on 
different queueing disciplines to handle the various flows. Compared 
to real network systems, several simplifications are made below to 

7 This document primarily focuses on the M/M/1 queueing model. We will 
explicitly specify the use of other models, such as the M/G/1 model, when 
applicable. If we do not explicitly say it, we assume an M/M/1 system.

8 A ‘‘work-conserving’’ discipline ensures that no work (or service require-
ment) is created or destroyed within the system, maintaining a constant 
system workload. As defined in [34], this family of work-conserving queueing 
disciplines adheres to the following principles: no defections (work does not 
leave the system before completion), no extra work is created, and no server 
idleness (the server never idles when work is available).



M.-J.C. Tsai and L. Kleinrock Computer Networks 263 (2025) 111153 
Fig. 4. Model for a single hop M/M/1 system with multiple flows using work-
conserving queueing disciplines.

concentrate on understanding the impact of transitioning from a single 
flow to multiple flows, particularly how different flows with varying 
throughput and delay requirements compete for system resources. The 
simplifications we make include:

• From Multiple Hops to Single Hop
The network graph depicted in Fig.  2 consists of multiple hops. 
However, for our analysis, we simplify the network to a single 
hop. This simplification is justified by the fact that congestion for 
a given flow typically occurs at that flow’s bottleneck, where most 
of its waiting time arises. By focusing on the analysis only at the 
bottleneck, we can avoid the influence of multiple hops, allowing 
us to analyze the effect of multiple flows more clearly.

• Assume M/M/1
As stated above, each flow is assumed to arrive from an indepen-
dent Poisson process, and the required service time of each packet 
is independently and identically selected from an exponential dis-
tribution, and the average service time for each flow is identical. 
We opt for the M/M/1 model [33] here as it simplifies the compu-
tation regarding mean response time. This choice facilitates easier 
analysis, allowing us to uncover potentially hidden insights.9 The 
M/M/1 model is the default unless otherwise explicitly stated.

• Focus on Two Queueing Disciplines
The two queueing disciplines that we initially focus on are first-
come, first-served (FCFS) and head-of-line preemptive-resume pri-
ority queueing (HOL) [15–17]. The choice of these two disciplines 
is motivated by three key factors: common use in practice, rep-
resentation of the least (FCFS) and most (HOL) discriminatory 
behavior based on priority groups, and the relative simplicity of 
their response time formulas for theoretical analysis.

Having established these simplifications, we now detail the two 
chosen queueing disciplines and introduce their response times in the 
M/M/1 setting.
First-Come, First-Served (FCFS)

In the FCFS system, each flow is treated the same in that each flow 
joins the same single queue and has the same mean response time [33]: 

𝑇𝑖 = 𝑇 = 1
𝜇(1 − 𝜌)

for all 𝑖 = 1,… , 𝑛 (5)

where 𝜌 represents the total utilization of the system. This mean 
response time is equal for all flows and is mainly determined by the 
total system utilization 𝜌 = 𝜆

𝜇 .

Head-of-Line Preemptive Resume Priority (HOL)
In the head-of-line (HOL) system, as depicted in Fig.  5, a packet 

from group 𝑖 has priority and can cut in line ahead of all packets from 
groups 𝑖+1, 𝑖+2,… , 𝑛. Specifically, under preemptive resume priority10 
(the most discriminative of work-conserving queueing disciplines), a 

9 Future studies involving other service time distributions, (e.g. determin-
istic) might reveal how general these insights beyond this distribution might 
apply.
10 In the following, ‘‘HOL’’ refers to the preemptive resume form of 
head-of-line priority queueing.
4 
Fig. 5. Head-of-Line (HOL) priority queueing, where higher-priority packets, even 
arriving late, are placed ahead of lower-priority groups’ packets.

higher-priority packet can preempt a lower-priority packet currently 
being served, with the lower-priority packet’s service later resuming 
from the point of interruption. In our model, we assume that priority 
decreases with increasing group number; thus, group 1 has the highest 
priority, and group 𝑛 has the lowest.

The response time in HOL for each priority group 𝑖 is [16]: 

𝑇𝑖 =
1

𝜇(1 − 𝜎𝑖−1)(1 − 𝜎𝑖)
(6)

where 

𝜎𝑖 =
𝑖

∑

𝑗=1
𝜌𝑗 (7)

This formula demonstrates the different response times for different pri-
ority groups, with higher-priority groups experiencing shorter response 
times compared to lower-priority groups.

These two disciplines represent the extremes in terms of the dif-
ference in each flow’s response time among work-conserving queueing 
policies [15]: FCFS is the least discriminatory, resulting in identical 
response times for all flows, while HOL is the most discriminatory, 
leading to the largest difference in response times between priority 
groups.

In the following three sections, we introduce three different opti-
mization power metrics, one in each section. For each, we will define 
the optimization metric, find the optimized 𝜌∗ that maximizes each 
power metric, and compute the corresponding optimal power.

4. Performance optimization metric 1: Individual power, 𝑷𝒊

4.1. Description of the end-to-end viewpoint

The end-to-end perspective refers to congestion control mechanisms 
implemented at the endpoints of a communication system. For instance, 
this would be the TCP congestion control at the transport layer [18–27] 
or the adaptive bitrate algorithm for video streaming at the application 
layer [35–39]. This viewpoint emphasizes the experience of each end 
user, leading to the concept of ‘‘individual power’’. This term is defined 
in terms of the throughput and delay experienced by individual flows, 
providing a user-centric metric of network performance.

4.2. Definition

The definition of ‘‘individual power’’ for the 𝑖th flow is: 

𝑃𝑖 =
𝜌𝑖

𝜇𝑇𝑖(𝜌𝑖)
(8)

In this equation, 𝜌𝑖 represents the utilization factor of the 𝑖th flow, 
and 𝜇𝑇𝑖(𝜌𝑖) is its normalized mean response time. The term 𝑇𝑖(𝜌𝑖)
denotes the mean response time for flow 𝑖, which depends on 𝜌𝑖. The 
subscript 𝑖 in 𝑇  indicates that the response time may vary for each flow, 
particularly when the queueing discipline is not FCFS. The denominator 
in Eq.  (8) shows that the mean response time 𝑇 (𝜌 ) is normalized by its 
𝑖 𝑖
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no-load response time, 1𝜇 , which represents the average service time of 
a packet.

With the definition of individual power established, we proceed 
to the optimization, considering two scenarios: singly optimizing flow 
𝑖’s individual power and then jointly optimizing all flows’ individual 
powers.

4.3. Singly optimizing individual power

We first focus on singly optimizing flow 𝑖’s individual power (1 ≤
𝑖 ≤ 𝑛). Our objective is to determine the value of 𝜌∗𝑖  that maximizes 
the metric 𝑃𝑖 =

𝜌𝑖
𝜇𝑇𝑖
, assuming fixed utilizations for all other flows. The 

optimal 𝜌∗𝑖  is found by solving: 
𝑑𝑃𝑖
𝑑𝜌𝑖

= 0 (9)

In the following, we derive the individual power 𝑃𝑖 and determine 
the optimal utilizations 𝜌∗𝑖  first for FCFS and then for the HOL queueing 
discipline.

4.3.1. FCFS
In an M/M/1 system with 𝑛 flows under the FCFS queueing disci-

pline, the response time 𝑇𝑖 is the same for all flows and depends on the 
total system utilization 𝜌, as stated in Eq.  (5). Thus, for the 𝑖th flow, 
the individual power given by Eq.  (8) is 
𝑃𝑖 =

𝜌𝑖
𝜇𝑇𝑖

= 𝜌𝑖(1 − 𝜌) (10)

To emphasize the individual impact of utilization on response time, 
we separate the utilization of the 𝑖th flow, 𝜌𝑖, from the total system 
utilization, 𝜌. We use 𝛼𝑖 to represent the sum of the utilizations of all 
other flows besides the 𝑖th, defined by the formula: 

𝛼𝑖 =
𝑛
∑

𝑗=1,𝑗≠𝑖
𝜌𝑗 (11)

The individual power for flow 𝑖 is then:

𝑃𝑖 = 𝜌𝑖(1 − 𝜌) = 𝜌𝑖(1 −
𝑛
∑

𝑗=1,𝑗≠𝑖
𝜌𝑗 − 𝜌𝑖) = 𝜌𝑖(1 − 𝛼𝑖 − 𝜌𝑖)

Setting the derivative of 𝑃𝑖 with respect to 𝜌𝑖 to zero (Eq.  (9)) yields:
𝑑𝑃𝑖
𝑑𝜌𝑖

=
𝑑𝜌𝑖(1 − 𝛼𝑖 − 𝜌𝑖)

𝑑𝜌𝑖
= 1 − 𝛼𝑖 − 2𝜌𝑖 = 0

Solving for 𝜌𝑖 gives the optimal utilization 𝜌∗𝑖  as:

𝜌∗𝑖 =
1 − 𝛼𝑖
2

=
1 −

∑𝑛
𝑗=1,𝑗≠𝑖 𝜌𝑗
2

The corresponding optimal individual power 𝑃 ∗
𝑖  is:

𝑃 ∗
𝑖 = 𝜌∗𝑖 (1 − 𝛼𝑖 − 𝜌∗𝑖 ) =

1 − 𝛼𝑖
2

(1 − 𝛼𝑖 −
1 − 𝛼𝑖
2

) = (
1 − 𝛼𝑖
2

)2

Note that 𝑃 ∗
𝑖  is independent of 𝜌𝑖 for FCFS (but does depend on all 𝜌𝑗

for 𝑗 ≠ 𝑖). The above results are summarized in the following theorem: 

Theorem 4.1.  In an M/M/1 system employing a FCFS queueing discipline, 
the optimal 𝜌∗𝑖  for the flow 𝑖 (1 ≤ 𝑖 ≤ 𝑛) to maximize 𝑃𝑖 is half of the 
remaining utilization (i.e., the utilization not used by other flows): 

𝜌∗𝑖 =
1 − 𝛼𝑖
2

(12)

with 𝛼𝑖 =
∑𝑛

𝑗=1,𝑗≠𝑖 𝜌𝑗 indicating the portion of utilization occupied by other 
flows. The maximal individual power value for the 𝑖th flow is: 

𝑃 ∗
𝑖 =

(

1 − 𝛼𝑖
2

)2
(13)

Notably, the well-known result that the optimal value 𝜌∗ = 0.5 for a 
single flow [5–7] as stated in Section 2 aligns with this theorem. That 
is, it is the case when 𝛼𝑖 = 0, as there are no other flows in the system, 
allowing the entire channel to be available for that single flow, which 
leads to the optimal utilization value being 𝜌∗ = 0.5.
5 
4.3.2. HOL
Having analyzed the minimal flow discrimination case under FCFS, 

we now consider the maximal flow discrimination case under the 
head-of-line (HOL) preemptive resume priority queueing discipline. The 
response time for flow 𝑖 is given by Eq.  (6) in Section 3. The individual 
power for flow 𝑖 therefore: 
𝑃𝑖 =

𝜌𝑖
𝜇𝑇𝑖

= 𝜌𝑖(1 − 𝜎𝑖)(1 − 𝜎𝑖−1) = 𝜌𝑖(1 − 𝜎𝑖−1 − 𝜌𝑖)(1 − 𝜎𝑖−1) (14)

To find 𝜌∗𝑖  that maximizes 𝑃𝑖, we set its derivative with respect to 𝜌𝑖 to 
zero (Eq.  (9)):
𝑑𝑃𝑖
𝑑𝜌𝑖

=
𝑑𝜌𝑖(1 − 𝜎𝑖−1 − 𝜌𝑖)(1 − 𝜎𝑖−1)

𝑑𝜌𝑖
= 0

Solving this gives:

𝜌∗𝑖 =
1 − 𝜎𝑖−1

2
The optimal individual power 𝑃 ∗

𝑖  is then:
𝑃 ∗
𝑖 = 𝜌∗𝑖 (1 − 𝜎𝑖−1 − 𝜌∗𝑖 )(1 − 𝜎𝑖−1)

=
1 − 𝜎𝑖−1

2

(

1 − 𝜎𝑖−1 −
1 − 𝜎𝑖−1

2

)

(1 − 𝜎𝑖−1) =
(1 − 𝜎𝑖−1)3

4

For HOL, 𝑃 ∗
𝑖  is also independent of 𝜌𝑖, as was the case for FCFS. The 

preceding results are summarized in the following theorem: 

Theorem 4.2.  In an M/M/1 system with HOL, the optimal 𝜌∗𝑖  for the 
flow 𝑖 (1 ≤ 𝑖 ≤ 𝑛) to maximize 𝑃𝑖 is half of the remaining utilization after 
accounting for higher-priority flows: 

𝜌∗𝑖 =
1 − 𝜎𝑖−1

2
(15)

with 𝜎𝑖−1 =
∑𝑖−1

𝑗=1 𝜌𝑗 denoting the aggregate utilizations of higher-priority 
flows. The resulting maximal individual power is then: 

𝑃 ∗
𝑖 =

(1 − 𝜎𝑖−1)3

4
(16)

4.4. Jointly optimizing individual power

Having singly optimized individual power for the 𝑖th flow, we now 
consider the joint optimization of individual power across all flows. 
Unlike the singly optimized case, where we focused on the flow 𝑖 and 
assumed other flows’ utilizations were fixed, the joint optimization 
accounts for the dynamic (iterative) nature of these utilizations. This 
dynamic behavior arises because each flow’s optimization alters the 
remaining utilization available to other flows, affecting their optimal 
𝜌∗𝑖 . To determine the equilibrium optimal values of 𝜌∗𝑖 , we solve the 
following system of 𝑛 equations, which represent the optimization 
condition for each flow: 
𝜕𝑃𝑖
𝜕𝜌𝑖

= 0 for 𝑖 = 1,… , 𝑛 (17)

If a solution exists for this system of 𝑛 equations (Eq.  (17)), simultane-
ously solving them yields the equilibrium optimal set of 𝜌∗𝑖 .11

Below we perform the joint optimization under both the FCFS and 
HOL queueing disciplines. The mathematical operation for finding the 
optimal utilization–setting the ordinary derivative (in the singly opti-
mized case, Eq.  (9)) or the partial derivative (in the jointly optimized 
case, Eq.  (17)) of a flow’s power with respect to its utilization to zero–
is fundamentally the same. Therefore, we use the expressions for 𝜌∗𝑖
derived in the singly optimized cases (Eq.  (12) for FCFS and Eq.  (15) 
for HOL) as components of the systems of 𝑛 equations to solve for each 
discipline. We then calculate the optimized total system utilization 𝜌∗, 
the optimal individual power for each flow 𝑃 ∗

𝑖 , and the sum of these 
optimized individual powers 𝑃sum-of-optimals.12 Finally, we consider the 
limiting case where the number of flows approaches infinity.

11 Note that this set of 𝜌∗ represents a Nash equilibrium [40].
𝑖
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4.4.1. FCFS
To determine the equilibrium optimal utilizations 𝜌∗𝑖  for 𝑖 = 1,… , 𝑛

under FCFS, we consider the system of 𝑛 equations of the form given 
by Eq.  (12). This equation can be rewritten as: 
𝜌𝑖 = 1 − 𝜌 for 𝑖 = 1,… , 𝑛 (18)

where 𝜌 =
∑𝑛

𝑗=1 𝜌𝑗 . Summing Eq.  (18) over all 𝑖 from 1 to 𝑛 yields:
𝑛
∑

𝑖=1
𝜌𝑖 =

𝑛
∑

𝑖=1
(1 − 𝜌) ⟹ 𝜌 = 𝑛(1 − 𝜌)

Rearranging this gives the optimal total system utilization: 
𝜌∗ = 𝑛

𝑛 + 1
(19)

Substituting 𝜌∗ into Eq.  (18), we have:
𝜌∗𝑖 = 1 − 𝜌∗ = 1 − 𝑛

𝑛 + 1
After simplification, we obtain the convergent optimal utilization 𝜌∗𝑖  for 
each flow: 
𝜌∗𝑖 = 1

𝑛 + 1
for 𝑖 = 1,… , 𝑛 (20)

Taking Eq.  (20) back into Eq.  (10), we compute the optimized individ-
ual power at convergence: 

𝑃 ∗
𝑖 = 1

𝑛 + 1
(1 − 𝑛

𝑛 + 1
) = 1

(𝑛 + 1)2
(21)

Let us now define the sum of individual powers: 

𝑃sum =
𝑛
∑

𝑖=1
𝑃𝑖 =

𝑛
∑

𝑖=1

𝜌𝑖
𝜇𝑇𝑖

(22)

For the sum of optimized individual powers, we use the notation 
𝑃sum-of-optimals to emphasize that each individual power value is optimal:

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 (23)

Using Eq.  (21), we have: 

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = 𝑛

(𝑛 + 1)2
(24)

These results are summarized in the following theorem: 

Theorem 4.3.  In an M/M/1 system with 𝑛 flows using FCFS, when each 
flow jointly optimizes its individual power 𝑃𝑖 = 𝜌𝑖(1 − 𝜌)

• The optimal operating point (𝜌∗1 , 𝜌∗2 ,… , 𝜌∗𝑛) at convergence is: 

𝜌∗𝑖 = 1
𝑛 + 1

for 𝑖 = 1,… , 𝑛 (25)

• The optimized total system utilization is: 
𝜌∗ = 𝑛

𝑛 + 1
(26)

• The corresponding optimized individual power for each flow at conver-
gence is: 

𝑃 ∗
𝑖 = 1

(𝑛 + 1)2
for 𝑖 = 1,… , 𝑛 (27)

• The sum of optimized individual powers is: 

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = 𝑛

(𝑛 + 1)2
(28)

12 Note that in this section we show the sum of the optimized individual powers
(as defined in Eq.  (23)). However, the sum of individual powers (as defined 
in Eq.  (22)) might not be maximal. We explore the optimal sum of individual 
powers in Section 5.
6 
We do not use the superscript ∗ for 𝑃sum-of-optimals because optimizing 
each individual power does not guarantee a maximum sum of powers 
𝑃 ∗
sum. The optimal individual power given by Eq.  (27) represents a 
convergent balance for each flow when optimizing its individual power.

Note that 𝜌∗ = 𝑛
𝑛+1  (Eq.  (26)) is strictly less than 1 for finite 

𝑛, indicating that the system remains stable. However, in the limit 
as 𝑛 → ∞, the system becomes unstable as 𝜌∗ approaches 1. The 
asymptotic behavior of the optimization results as 𝑛 approaches infinity 
is summarized in the following corollary: 

Corollary 4.1.  Consider an M/M/1 system with 𝑛 flows under the FCFS 
queueing discipline and where each flow 𝑖 jointly optimizes its individual 
power 𝑃𝑖 = 𝜌𝑖(1 − 𝜌). As 𝑛 approaches infinity, the limiting behavior is as 
follows:

• The optimized total system load 𝜌∗ approaches 1: 
lim
𝑛→∞

𝜌∗ = lim
𝑛→∞

𝑛
𝑛 + 1

= 1 (29)

• The optimized individual power 𝑃 ∗
𝑖  at convergence for each flow ap-

proaches 0: 

lim
𝑛→∞

𝑃 ∗
𝑖 = lim

𝑛→∞
1

(𝑛 + 1)2
= 0 (30)

• The sum of optimized individual powers 𝑃sum-of-optimals =
∑𝑛

𝑖=1 𝑃
∗
𝑖  also 

approaches 0: 

lim
𝑛→∞

𝑃sum-of-optimals = lim
𝑛→∞

𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = lim

𝑛→∞
𝑛

(𝑛 + 1)2
= 0 (31)

Based on the limiting behavior from Eqs. (29), (30), and (31), 
we observe that as the number of flows increases significantly and 
each flow optimizes its individual power simultaneously, both the 
optimized individual power 𝑃 ∗

𝑖 = 1
(𝑛+1)2  and the sum of the optimized 

individual powers 𝑃sum-of-optimals =
∑𝑛

𝑖=1 𝑃
∗
𝑖 = 𝑛

(𝑛+1)2  diminish to zero. 
This indicates that each flow experiences a significant response time, 
causing its individual power to approach zero. Morever, the summation 
of individual powers also trends towards zero. This scenario reflects 
reduced benefits for both individual flows and the system as a whole 
as the number of flows increases, resembling the well-known concept 
of the tragedy of the commons [41].

In addition, this finding from our theoretical analysis is consistent 
with practical simulation results that highlight how numerous TCP 
flows can lead to high loss rates and delays, as demonstrated in stud-
ies [42–44]. For instance, Morris in [42] found that the loss rate can 
reach as high as 17% with 1500 TCP flows. While our analysis assumes 
a lossless system, with a theoretical very large buffer, in reality, the 
significant delays identified in our results would likely translate to 
high loss rates when taking into account the limited size of actual 
buffers. Thus, this theoretical analysis offers valuable insights into the 
potential challenges posed by a large number of TCP flows, aligning 
with empirical observations in practical scenarios.

4.4.2. HOL
We now proceed to the HOL case. To solve the system of 𝑛 equations 

given by Eq.  (15) for 𝑖 = 1,… , 𝑛, we first examine the equations for 𝑖 = 1
and 𝑖 = 2, finding that 𝜌∗1 = 1

2  and 𝜌∗2 = 1
4 . We observe that 𝜌∗𝑖  follows 

a geometric sequence where each term is half of the preceding one. 
This pattern for 𝑖 = 1, 2, 3, 4,…  is 12 , 

1
4 , 

1
8 , 

1
16 , and so forth. Based on 

this pattern, we hypothesize that the formula for each flow’s optimal 
utilization 𝜌∗𝑖  at convergence is: 

𝜌∗𝑖 =
( 1
2

)𝑖
for 𝑖 = 1, 2,… , 𝑛 (32)

Substituting Eq.  (32) into Eq.  (15) confirms the equation, indicating the 
correctness of the formula. Next, we calculate the optimum total uti-
lization at convergence by summing the individual optimal utilizations 
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𝜌∗𝑖 :

𝜌∗ =
𝑛
∑

𝑖=1
𝜌∗𝑖 =

𝑛
∑

𝑖=1
( 1
2
)𝑖 =

1
2 (1 − ( 12 )

𝑛)

1 − 1
2

Simplifying this gives: 

𝜌∗ = 1 −
( 1
2

)𝑛
(33)

Substituting Eq.  (32) into Eq.  (14), we compute the optimized individ-
ual power at convergence:

𝑃 ∗
𝑖 = 𝜌∗𝑖 (1 − 𝜎𝑖)(1 − 𝜎𝑖−1) = 𝜌∗𝑖 (1 −

𝑖
∑

𝑗=1
𝜌∗𝑗 )(1 −

𝑖−1
∑

𝑗=1
𝜌∗𝑗 ) = ( 1

2
)𝑖 ( 1

2
)𝑖 ( 1

2
)𝑖−1

Simplifying this expression yields: 

𝑃 ∗
𝑖 = 2 ⋅ ( 1

8
)𝑖 for 𝑖 = 1, 2,… , 𝑛 (34)

Summing the optimized individual powers, we have:

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 =

𝑛
∑

𝑖=1
2 ⋅ ( 1

8
)𝑖 = 2 ⋅

1
8 (1 − ( 18 )

𝑛)

1 − 1
8

This expression simplifies to: 

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = 2

7
⋅
(

1 − ( 1
8
)𝑛
)

(35)

From Eq.  (32) and Eq.  (34), we can see that the optimal value for 𝜌∗𝑖
and 𝑃 ∗

𝑖  are independent of the number of flows, 𝑛. This is because the 
response time of higher priority groups is not affected by lower priority 
groups. Hence, as the number of flows increases, the value of 𝜌∗𝑖  and 
𝑃 ∗
𝑖  for higher priority flows already in the system remains unchanged. 
They are not affected by the joining of subsequent lower priority flows. 
For example, the first flow always has its 𝜌∗1 = 0.5 with 𝑃 ∗

1 = 0.25
regardless of how many subsequent flows join the system. This leads 
us to the following theorem, which formalizes the independence of the 
optimal equilibrium values from the number of flows and summarizes 
the optimization result: 

Theorem 4.4.  For an M/M/1 system with 𝑛 flows using the preemptive 
resume HOL queueing discipline, when each flow jointly optimizes its individ-
ual power 𝑃𝑖 = 𝜌𝑖(1 − 𝜎𝑖)(1 − 𝜎𝑖−1), at convergence, the optimum utilization 
factor 𝜌∗𝑖  for each flow 𝑖 (where 𝑖 ≤ 𝑛) and the corresponding value of 
optimized individual power 𝑃 ∗

𝑖  are both independent of the number of flows 
in the system.

In other words, for 𝑖 ≤ 𝑛, the values of 𝜌∗𝑖  and 𝑃 ∗
𝑖  are invariant to 

increases in 𝑛, meaning 𝜌∗𝑖  and 𝑃 ∗
𝑖  remain the same as the number of flows 

increases from 𝑛 to 𝑛 + 𝑘, where 𝑘 is any arbitrary positive integer.
At convergence, the optimal values are as follows:
• The optimal utilization factor for each flow 𝑖 at convergence is: 

𝜌∗𝑖 = (1
2
)𝑖 for 𝑖 = 1, 2,… , 𝑛 (36)

• The optimum total utilization factor is: 

𝜌∗ = 1 −
( 1
2

)𝑛
(37)

• The optimized individual power for flow 𝑖 at convergence is: 

𝑃 ∗
𝑖 = 2 ⋅ ( 1

8
)𝑖 for 𝑖 = 1, 2,… , 𝑛 (38)

• The sum of optimized individual powers is: 

𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = 2

7
⋅ (1 − ( 1

8
)𝑛) (39)

Given that the optimal individual power for each flow remains 
constant regardless of the number of flows in the system, the sum of 
the optimized individual powers for the entire system increases as the 
7 
number of flows increases. Each newly added flow, with lower priority, 
does not affect the power sum of higher priority flows and contributes 
its own power value to the system. This accumulation continues with 
new flows experiencing increasing waiting times, resulting in almost 
zero individual power for very low priority flows. Consequently, as 
more flows are added, the sum of optimized individual powers gradu-
ally converges to a limiting value. Specifically, as the number of flows 
approaches infinity, the total sum of the individual powers converges 
to 27 .

Corollary 4.2.  Consider an M/M/1 system with 𝑛 flows under an HOL 
queueing system where each flow 𝑖 optimizes its individual power 𝑃𝑖 =
𝜌𝑖(1 − 𝜌). As 𝑛 approaches infinity, the limiting behavior is as follows:

• The optimized total system load 𝜌∗ approaches 1 

lim
𝑛→∞

𝜌∗ = lim
𝑛→∞

1 − ( 1
2
)𝑛 = 1 (40)

• The sum of optimized individual powers 𝑃sum-of-optimals =
∑𝑛

𝑖=1 𝑃
∗
𝑖

approaches 27

lim
𝑛→∞

𝑃sum-of-optimals = lim
𝑛→∞

𝑛
∑

𝑖=1
𝑃 ∗
𝑖 = lim

𝑛→∞
2
7
⋅ (1 − ( 1

8
)𝑛) = 2

7
(41)

4.5. Comparison of joint individual power optimization results for FCFS and 
HOL

Table  1 summarizes the convergent results when each flow jointly 
optimizes its individual power under FCFS and HOL, as derived in 
Section 4.4. It presents the equilibrium optimal individual utilizations 
𝜌∗𝑖  for each flow, the optimum total system utilization 𝜌∗, and the 
corresponding optimized individual powers along with their sum. The 
table also includes the limiting behavior of 𝜌∗ and the sum of 𝑃 ∗

𝑖 .

Table 1
Jointly optimized individual power optimization at convergence for FCFS and HOL.
 FCFS HOL  
 𝜌∗𝑖 1

𝑛+1 ( 12 )
𝑖  

 𝜌∗ =
𝑛
∑

𝑖=1
𝜌∗𝑖

𝑛
𝑛+1 1 − ( 12 )

𝑛  

 lim
𝑛→∞

𝜌∗ 1 1  

 𝑃 ∗
𝑖

1
(𝑛+1)2 2( 18 )

𝑖  

 𝑃sum-of-optimals =
𝑛
∑

𝑖=1
𝑃 ∗
𝑖

𝑛
(𝑛+1)2

2
7 (1 − ( 18 )

𝑛) 

 lim
𝑛→∞

𝑃sum-of-optimals 0 2
7  

Fig.  6 shows the optimal system utilization 𝜌∗ = ∑𝑛
𝑖=1 𝜌

∗
𝑖  for different 

values of 𝑛 under FCFS and HOL (values from the second row in Table 
1). As discussed previously, as the number of flows 𝑛 tends to infinity, 
the optimum system utilization 𝜌∗ approaches unity for both FCFS and 
HOL. For other work-conserving queueing disciplines, we conjecture 
that the curves of the optimized system utilization 𝜌∗ with the number 
of flows 𝑛 at equilibrium lie between the curves of FCFS and HOL, with 
HOL as the upper bound and FCFS as the lower bound. Furthermore, 
Fig.  6 also shows that the optimum system utilization 𝜌∗ approaches 1 
in HOL faster than in FCFS.

To assess overall performance, we use the summation of optimized 
individual powers to compare the optimization results. The values for 
FCFS and HOL, indicated in the fifth row of Table  1, are used to plot Fig. 
7, which shows that the sum of powers is greater in HOL than in FCFS 
for each 𝑛. Furthermore, the figure shows how the sum of optimized 
individual powers changes differently with the number of flows in the 
system. In the HOL system, the sum of optimized individual powers 
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Fig. 6. Trend of the optimum system utilization 𝜌∗ as the number of flows 𝑛 increases. 
The HOL and the FCFS are conjectured to be the upper and lower bounds. The yellow 
region between FCFS and HOL is conjectured to be the range of possible optimum 
system utilization for any other work-conserving priority discipline.

Fig. 7. Trend of the optimized individual power summation versus the number of 
flows 𝑛. HOL and FCFS are conjectured as the upper and lower bounds, respectively. 
The tan region between them is the conjectured range of possible sum of the optimized 
individual power for any other work-conserving priority discipline.

increases with the number of flows and rapidly converges towards 27 . 
Conversely, in the FCFS system, this metric decreases, approaching 0 as 
the number of flows grows to infinity. This demonstrates that different 
queueing disciplines, which introduce varying levels of discrimination 
among flows, lead to divergent trends in overall performance. The two 
queueing disciplines, FCFS and HOL, are conjectured to serve as the 
bounds for the possible sum of optimized individual power values for 
any other work-conserving priority discipline.

To summarize, Section 4 introduced individual power and explored 
both singly optimizing and jointly optimizing individual power under 
FCFS and HOL. We specifically used the ‘‘sum of optimized individual 
powers’’ to evaluate the convergent results of the joint optimization 
for these two disciplines with different flow discrimination priorities. 
However, the ‘‘sum of individual powers’’ computed here was not 
maximized because it was not the primary optimization objective, as 
we focused on the end-to-end (individual flow) perspective.

In the next section, we shift our perspective from this end-to-end 
viewpoint to a system-wide viewpoint and change the optimization goal 
from maximizing individual power to maximizing the sum of individual 
powers, 𝑃 ∗ , to enhance overall system performance; this is our metric 
sum

8 
2. We will discuss how this system-wide viewpoint aligns with the sum 
of individual powers as a metric. We will then identify the optimal 
utilization factor 𝜌∗𝑖  for each flow 𝑖 = 1,… , 𝑛, which collectively 
maximizes the sum of individual powers for both FCFS and HOL.

5. Performance optimization metric 2: Sum of individual powers, 
𝑷sum

5.1. Description of the system-wide viewpoint

When each flow optimizes its individual power, the total system 
resources may not be efficiently utilized. For example, in the FCFS case, 
the system can become overwhelmed when each flow optimizes its own 
power, causing long mean response times for all flows and leading to 
an almost zero sum of individual power, as discussed previously.

From a system operator point of view, the goal should perhaps 
be optimizing the overall benefit for the system. A straightforward 
approach to achieving this is to take the sum of individual powers as 
the optimization target. Compared to considering just the throughput 
(which corresponds to system utilization) or just the mean response 
time of each flow, using the sum of individual powers not only retains 
the benefits of balancing two competing performance metrics (through-
put and response time) but also strives to utilize system resources 
efficiently and enhance overall performance.

One corresponding congestion control mechanism that requires a 
system-wide perspective is the active queue management mechanism 
in routers. Even though routers lack direct control over incoming 
traffic from sources managed by end systems, they can indirectly 
influence traffic by transmitting congestion signals to the end systems 
(e.g., DECbit [45], ECN [28]) or by preemptively dropping packets 
before buffers reach capacity (e.g., RED [46]). These actions prompt 
TCP to adjust its congestion window, thereby reducing input rates. 
Consequently, effective congestion control mechanisms in routers ne-
cessitate an understanding of when to trigger these control mechanisms 
and how to execute them. Additionally, routers may need to priori-
tize certain types of traffic, such as delay-sensitive traffic, to ensure 
lower response times for these flows. However, this prioritization may 
negatively impact other traffic, resulting in higher response times or 
even causing starvation. In that case, how routers manage each flow’s 
volume and the utilization ratio of high and low priority flows to 
prevent starvation becomes critical, making it essential for routers 
under different queueing disciplines to ascertain the optimal traffic 
volume each input flow should maintain within the system, i.e., each 
flow’s utilization factor 𝜌𝑖.

Moreover, a system operator could use individual power to charge 
each user, as a higher value of power typically indicates more through-
put usage or higher priority in being served to achieve lower mean 
response times. The goal of maximizing the sum of power could be used 
to maximize revenue for the system operator, as it aligns the operator’s 
financial incentives with the efficient utilization of system resources 
and improved overall performance.

5.2. Definition

Recall that 𝑃sum is defined in Eq.  (22) as: 

𝑃sum =
𝑛
∑

𝑖=1
𝑃𝑖 =

𝑛
∑

𝑖=1

𝜌𝑖
𝜇𝑇𝑖

(42)

This formula aggregates the power of each flow, ensuring every flow 
is considered. A system with flow discrimination focusing solely on 
high-priority flows can negatively impact lower-priority flows. By fo-
cusing on improving (maximizing) the sum of individual powers here, 
we ensure that higher-priority flows do not operate independently of 
lower-priority flows, preventing potential negative impacts to lower 
priorities. This aggregation provides a more balanced resource alloca-
tion, especially in HOL systems, where higher-priority flows may be 
unaware of lower-priority flows, as they can bypass them in the queue.
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5.3. Optimizing sum of individual powers, 𝑃 ∗
sum

We now seek to find the maximal value of the sum of individual 
powers, which we denote as 𝑃 ∗

sum. Specifically, we aim to determine 
the operating points for the set of utilizations for each flow 𝜌∗1 , 𝜌∗2 ,… , 𝜌∗𝑛
that collectively maximize this sum of individual powers. To this end, 
we identify the critical points of the sum of individual powers by 
calculating the partial derivatives with respect to each 𝜌𝑖 and setting 
them to zero:
𝜕
𝜕𝜌𝑖

𝑃sum = 𝜕
𝜕𝜌𝑖

𝑛
∑

𝑗=1
𝑃𝑗 =

𝜕
𝜕𝜌𝑖

𝑛
∑

𝑗=1

𝜌𝑗
𝜇𝑇𝑗

= 0 for 𝑖 = 1, 2,… , 𝑛

By solving these equations simultaneously, we find the critical points 
for each 𝜌𝑖, which, as usual, we denote as 𝜌∗𝑖  (for 𝑖 = 1,… , 𝑛). These 
critical points maximize the sum of individual powers. In the following, 
we determine the optimal utilization for each flow that maximizes the 
sum of powers in FCFS and HOL, respectively.

5.3.1. FCFS
In FCFS, where jobs are processed in the order they arrive without 

prioritization, each flow has the same response time, denoted as 𝑇𝑖 =
𝑇 = 1

𝜇(1−𝜌)  for 𝑖 = 1,… , 𝑛. With the individual power given by Eq.  (10), 
the sum of individual powers for the FCFS system is: 

𝑃sum =
𝑛
∑

𝑖=1
𝑃𝑖 =

𝑛
∑

𝑖=1

𝜌𝑖
𝜇𝑇

=
𝑛
∑

𝑖=1
𝜌𝑖(1 − 𝜌) (43)

resulting in: 
𝑃sum = 𝜌(1 − 𝜌) (44)

To maximize the sum of powers, we take the partial derivative of this 
sum with respect to each flow’s utilization and set it equal to zero: 
𝜕𝑃sum
𝜕𝜌𝑖

=
𝜕𝜌(1 − 𝜌)

𝜕𝜌𝑖
= 0 for 𝑖 = 1, 2,… , 𝑛 (45)

Since 𝜕𝜌
𝜕𝜌𝑖

= 𝜕
∑𝑛

𝑖=1 𝜌𝑖
𝜕𝜌𝑖

= 1, we apply the chain rule to change the variable 
in Eq.  (45), resulting in:
𝜕𝑃sum
𝜕𝜌𝑖

=
𝜕𝜌(1 − 𝜌)

𝜕𝜌𝑖
=

𝜕𝜌(1 − 𝜌)
𝜕𝜌

𝜕𝜌
𝜕𝜌𝑖

= 1 − 2𝜌 = 0 for 𝑖 = 1, 2,… , 𝑛

Solving this equation, we find: 

𝜌∗ = 1
2

(46)

This implies that the sum of individual powers in the FCFS system is 
maximized when the total system utilization 𝜌∗ is equal to 12 . This maxi-
mum is achieved regardless of the distribution of individual utilizations 
𝜌∗𝑖  among the flows, as long as they are non-negative and sum to 𝜌∗ = 1

2 . 
This result is consistent with the result mentioned in Section 2 that 
maximum power occurs at 𝜌∗ = 1

2  for a single flow in an M/M/1 system. 
This consistency is not surprising because in FCFS, the superposition of 
𝑛 Poisson flows is equivalent to a single Poisson flow at a traffic level 
of 𝜌.

Substituting Eq.  (46) into Eq.  (44), we have the maximal sum of 
individual powers value: 𝑃 ∗

sum = 𝜌∗(1 − 𝜌∗) = 1
2

(

1 − 1
2

)

= 1
4 . This gives 

us the following interesting theorem: 

Theorem 5.1.  In an M/M/1 system with 𝑛 flows using the FCFS queueing 
discipline, the sum of individual powers reaches it maximal value when 
the sum of utilizations 𝜌∗ =

∑𝑛
𝑖=1 𝜌

∗
𝑖 = 1

2 . This is independent of the 
distribution of 𝜌∗𝑖  for 𝑖 = 1,… , 𝑛 as long as their sum 

𝜌∗ = 1
2

(47)

In this case, the maximal sum of power value is:

𝑃 ∗
sum =

𝑛
∑

𝑖=1
𝑃𝑖 =

1
4

where the individual power 𝑃  depends on each 𝜌∗ but sums to 1 .
𝑖 𝑖 4

9 
This result indicates that the system performs most efficiently when 
the total utilization is at 12 , irrespective of the individual allocations of 
utilization among different flows. This is because each flow’s utilization 
contributes equally to the sum of powers, allowing the function to be 
expressed in terms of only 𝜌; this can be seen from Eq.  (44). Therefore, 
this multiple-flow system can be considered as a single-flow system 
where the total power 𝜌(1 − 𝜌) is a quadratic function of 𝜌 and reaches 
its maximum value at the midpoint of 𝜌.

The fact that the sum of powers depends solely on system utiliza-
tion is crucial for optimizing performance and resource management. 
This characteristic allows for flexible allocation of individual utilizations, 
facilitating the achievement of various optimization objectives. By 
understanding and leveraging this property, system administrators can 
dynamically adjust individual flow utilizations to maintain the total 
system utilization around the optimal point, thereby ensuring maxi-
mum efficiency and resource utilization. This flexibility is particularly 
beneficial in complex systems where workload and flow characteristics 
can vary over time.

5.3.2. HOL
FCFS offers flexibility in optimizing system performance in terms 

of sum of individual powers. We now proceed to investigate the other 
extreme of flow priority discrimination: Head-Of-Line (HOL) priority, 
the most discriminatory priority queueing discipline. We begin with the 
two-flow case and then extend the analysis to an arbitrary number of 
flows.

Two Flows
From Eq.  (14), we have the individual power of flow 1 is 𝑃1 =

𝜌1(1−𝜌1) and the individual power for flow 2 is 𝑃2 = 𝜌2(1−𝜌1)(1−𝜌1−𝜌2). 
The sum of the individual powers in HOL is thus 
𝑃sum = 𝑃1 + 𝑃2 = 𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2) (48)

This can be simplified and expressed as: 
𝑃sum = (𝜌1 + 𝜌2) (1 − 𝜌1) (1 − 𝜌2) (49)

To find the maximal sum of powers, we need to find the critical point 
where the partial derivatives of 𝑃sum with respect to 𝜌1 and 𝜌2 are 
both equal to zero. This can be represented by the following system 
of equations:
⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝜌1

𝑃sum = 0
𝜕

𝜕𝜌2
𝑃sum = 0

Substituting 𝑃sum = (𝜌1 + 𝜌2)(1− 𝜌1)(1− 𝜌2) into the system of equations 
above, we get
⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝜌1

𝑃sum = (1 − 𝜌2)(1 − 𝜌1 − 𝜌1 − 𝜌2) = 0
𝜕

𝜕𝜌2
𝑃sum = (1 − 𝜌1)(1 − 𝜌2 − 𝜌2 − 𝜌1) = 0

We observe that the terms (1 − 𝜌2) and (1 − 𝜌1) are non-zero, given the 
assumption of system stability where 𝜌1 < 1 and 𝜌2 < 1. Therefore, we 
can divide each of these equations by one of these non-zero terms to 
yield the two equations:
{

(1 − 𝜌1 − 𝜌1 − 𝜌2) = 0
(1 − 𝜌2 − 𝜌2 − 𝜌1) = 0

Solving these equations simultaneously, we determine that the unique 
values of 𝜌∗1 and 𝜌∗2 that maximize the sum of power for HOL are: 

𝜌∗1 = 𝜌∗2 = 1
3

(50)

This outcome reveals that the optimal utilization strategy for each flow, 
aimed at maximizing the summation of individual powers, occurs when 
both flows are allocated identical amounts of the system’s resources. 
Specifically, each flow should utilize one-third of the system capacity. 
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This configuration maximizes the system’s total power and reflects a 
balanced approach where each flow contributes equally to achieving 
optimal efficiency, ensuring both enhanced system performance and a 
more equitable distribution of resources.

The corresponding power values for flow 1 and flow 2 are:

𝑃1 = 𝜌1(1 − 𝜌1) =
1
3

(

1 − 1
3

)

= 2
9

𝑃2 = 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2) =
1
3

(

1 − 1
3

)(

1 − 1
3
− 1

3

)

= 2
27

The maximal sum of powers for the head-of-line priority system with 
two flows is thus:

𝑃 ∗
sum = 𝑃1 + 𝑃2 =

2
9
+ 2

27
= 8

27
≈ 0.296

This value exceeds the maximum sum of individual powers achiev-
able in an FCFS system, which is 0.25. This trend is consistent with 
the findings in Section 4, where the sum of powers in HOL was 
shown to be greater than that in FCFS when jointly optimizing indi-
vidual power. This consistency across optimizing different performance 
metrics highlights the greater efficiency of HOL compared to FCFS.
n Flows

In the two-flow case, optimizing the sum of individual powers in 
HOL results in equal optimal system utilization for each flow. This 
principle, where each flow’s optimum utilization is equal, can be gen-
eralized to an arbitrary number of flows with 𝑛 flows. The optimal 
utilization for each flow is then given by (see the Appendix for the 
proof): 

𝜌∗𝑖 = 1
𝑛 + 1

for 𝑖 = 1,… , 𝑛 (51)

Substituting Eq.  (51) into the individual power expression for HOL (Eq. 
(14), where 𝜎𝑖 =

∑𝑖
𝑗=1 𝜌𝑗) for each 𝑖:

𝑃𝑖 = 𝜌𝑖(1 − 𝜎𝑖−1)(1 − 𝜎𝑖) =
1

𝑛 + 1

(

1 − 𝑖 − 1
𝑛 + 1

)(

1 − 𝑖
𝑛 + 1

)

= 1
𝑛 + 1

⋅
𝑛 + 2 − 𝑖
𝑛 + 1

⋅
𝑛 + 𝑖 − 𝑖
𝑛 + 1

=
(𝑛 + 1 − 𝑖)(𝑛 + 2 − 𝑖)

(𝑛 + 1)3
for 𝑖 = 1, 2,… , 𝑛

Next, summing the individual powers across all flows yields the maxi-
mal sum of powers:

𝑃 ∗
sum =

𝑛
∑

𝑖=1
𝑃𝑖 =

1
(𝑛 + 1)3

𝑛
∑

𝑖=1
(𝑛 + 1 − 𝑖)(𝑛 + 2 − 𝑖)

= 1
(𝑛 + 1)3

𝑛
∑

𝑖=1

[

(𝑛 + 1)(𝑛 + 2) − 𝑖(2𝑛 + 3) + 𝑖2
]

= 1
(𝑛 + 1)3

[

(𝑛 + 1)(𝑛 + 2)𝑛 − (2𝑛 + 3)
𝑛(𝑛 + 1)

2
+

𝑛(𝑛 + 1)(2𝑛 + 1)
6

]

=
𝑛(𝑛 + 1)
(𝑛 + 1)3

[

(𝑛 + 2) − 2𝑛 + 3
2

+ 2𝑛 + 1
6

]

= 𝑛
6(𝑛 + 1)2

[6𝑛 + 12 − 6𝑛 − 9 + 2𝑛 + 1]

=
𝑛(𝑛 + 2)
3(𝑛 + 1)2

The results derived above are summarized in the following theorem:

Theorem 5.2.  Given the HOL preemptive resume priority queueing 
discipline with 𝑛 flows in an M/M/1 system, the sum of individual powers 
𝑃sum =

∑𝑛
𝑖=1 𝜌𝑖(1 − 𝜎𝑖−1)(1 − 𝜎𝑖), where 𝜎𝑖 =

∑𝑖
𝑗=1 𝜌𝑗 is optimal when each 

flow has the same utilization.
• Each flow’s optimized utilization is 
𝜌∗𝑖 = 1

𝑛 + 1
for 𝑖 = 1, 2,… , 𝑛 (52)

• The optimum total system utilization is 

𝜌∗ = 𝑛 (53)

𝑛 + 1
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• The maximal sum of powers is 

𝑃 ∗
sum =

𝑛(𝑛 + 2)
3(𝑛 + 1)2

(54)

• The individual power of each flow 𝑖 is 

𝑃𝑖 =
(𝑛 + 1 − 𝑖) (𝑛 + 2 − 𝑖)

(𝑛 + 1)3
for 𝑖 = 1, 2,… , 𝑛 (55)

Based on Theorem  5.2, the sum of individual powers is maximized 
when 𝜌∗ = 𝑛

𝑛+1 . Clearly, 𝜌∗ = 𝑛
𝑛+1  is always less than 1 for positive 

𝑛. In addition, as 𝑛 approaches infinity, the asymptotic behavior of 
the optimization results (optimized utilization and optimal powers) are 
stated in the following corollary:

Corollary 5.1.  Consider an M/M/1 system with 𝑛 flows using the HOL 
preemptive resume queueing discipline. As 𝑛 approaches infinity, the limit of 
the optimized system utilization 𝜌∗, when the sum of individual powers is 
maximal, is

• The optimized total system load 𝜌∗ approaches 1 
lim
𝑛→∞

𝜌∗ = lim
𝑛→∞

𝑛
𝑛 + 1

= 1 (56)

• The optimal sum of individual powers 𝑃sum =
∑𝑛

𝑖=1 𝑃
∗
𝑖  approaches 13

lim
𝑛→∞

𝑃 ∗
sum = lim

𝑛→∞

𝑛(𝑛 + 2)
3(𝑛 + 1)2

= 1
3

(57)

5.4. Comparison of sum of powers optimization results for FCFS and HOL

We compare the optimization results of FCFS and HOL derived in 
this section using the sum of individual power metric as the optimiza-
tion goal in Table  2. In FCFS, the individual utilization factor 𝜌∗𝑖  is not 
uniquely determined as long as their sum is 0.5; therefore, we leave the 
corresponding entry as a comment,13 in the table. The same applies to 
𝑃𝑖 for FCFS.
Table 2
Optimization results of using ‘‘sum of individual powers’’ as the optimization objective. 
The table shows 𝜌∗𝑖  and 𝜌∗ that achieve the maximum sum of powers, along with 𝑃𝑖
and 𝑃 ∗

sum and the limits of 𝜌∗ and 𝑃 ∗
sum for both FCFS and HOL.

 FCFS HOL  
 𝜌∗𝑖 See Footnote 13 1

𝑛+1  
 𝜌∗ 1

2
𝑛

𝑛+1  
 lim
𝑛→∞

𝜌∗ 1
2 1  

 𝑃𝑖 See Footnote 13 (𝑛+1−𝑖)(𝑛+2−𝑖)
(𝑛+1)3  

 𝑃 ∗
sum =

𝑛
∑

𝑖=1
𝑃𝑖

1
4

𝑛(𝑛+2)
3(𝑛+1)2  

 lim
𝑛→∞

𝑃 ∗
sum

1
4

1
3  

In HOL, some optimized values still depend on 𝑛. To better under-
stand how 𝑃 ∗

sum and the optimized 𝜌∗ that achieves this maximum vary 
with 𝑛, we plot 𝜌∗ against 𝑛 in Fig.  8 and 𝑃 ∗

sum against 𝑛 in Fig.  9. In 
these figures, the HOL and FCFS curves are conjectured to serve as the 
upper and lower bounds, respectively, for the maximum sum of individ-
ual powers 𝑃 ∗

sum and the optimized 𝜌∗. We further conjecture that the 
curves for other work-conserving queueing disciplines fall within the 
regions bounded by these two curves. For FCFS, the maximum sum of 
powers remains constant at 0.25 as 𝑛 increases in Fig.  9, with 𝜌∗ fixed 
at 0.5 regardless of the number of flows in Fig.  8. In contrast, HOL, 

13 From Theorem  5.1 any set (𝜌∗1 , 𝜌∗2 ,… , 𝜌∗𝑛) that sums to 1
2
 is optimal. The 

corresponding individual power values 𝑃1, 𝑃2,… , 𝑃𝑛 for this set sum to the 
optimal total power of 1 .
4
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Fig. 8. The 𝜌∗ that maximizes the sum of individual powers is shown for both FCFS 
and HOL as a function of 𝑛.

Fig. 9. The maximum sum of individual powers 𝑃 ∗
sum as a function of 𝑛 for both FCFS 

and HOL.

which represents maximal flow priority discrimination, has a maximum 
sum of individual powers that increases with 𝑛 and approaches an 
asymptotic value of 13  as 𝑛 becomes large, as shown in Fig.  9, while 
𝜌∗ increases towards 1, as shown in Fig.  8.

6. Performance optimization metric 3: Average power, 𝑷avg

In this section, we introduce an alternative metric–our third metric, 
average power–as another approach to evaluate the system’s overall 
performance.

6.1. Definition

Another approach to assessing system performance involves treating 
the system as a black box, focusing on measuring total system utiliza-
tion and sampling packets to obtain an average view of response times. 
From this perspective, we define the average power, denoted by 𝑃𝑎𝑣𝑔 , 
with the following mathematical expression: 

𝑃avg =
∑𝑛

𝑖=1 𝜌𝑖
∑𝑛

𝑖=1

(

𝜌𝑖
𝜌 𝜇𝑇𝑖

) (58)

𝑃avg is a form of utilization divided by response time, but specifically 
a load-weighted average response time. In the definition given by Eq. 
(58), the numerator represents the summation of the utilization factor 
for each traffic flow, where 𝜌𝑖 corresponds to the utilization factor of 
the 𝑖th flow, computed as 𝜌𝑖 = 𝜆𝑖

𝜇 . Clearly, the numerator is simply 
𝜌. The denominator represents the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 average response time 
of each flow, with weights determined by their respective utilization 
factor fractions within the system, namely 𝜌𝑖

𝜌 . As usual. the mean 
response time for each flow, denoted as 𝑇𝑖, is a function of 𝜌𝑖 and may 
vary depending on the queueing discipline employed.

With this definition, the average power can be expressed in a form 
that solely depends on 𝜌, leveraging the conservation law [47] and 
11 
using the assumption that each flow has the same mean service time, 
represented by 1

𝜇𝑖
= 1

𝜇  for 𝑖 = 1,… , 𝑛. The results in this section 
are not confined to M/M/1 queue systems but extend to all M/G/1 
work-conserving systems as well. We establish the following theorem:

Theorem 6.1.  For an M/G/1 system with 𝑛 flows, all having the same 
mean service time 1𝜇  and operating under any work-conserving queueing 
discipline, the average power, defined as: 

𝑃avg =
∑𝑛

𝑖=1 𝜌𝑖
∑𝑛

𝑖=1

(

𝜌𝑖
𝜌 𝜇𝑇𝑖

) (59)

can be reformulated as a function of 𝜌 and 𝑊0: 

𝑃avg =
𝜌(1 − 𝜌)

𝜇𝑊0 + (1 − 𝜌)
(60)

where 𝑊0 is the average remaining service time for the customer found in 
service by a new arrival from a Poisson arrival process, namely, 

𝑊0 =
𝑛
∑

𝑖=1

𝜆𝑖𝑥2𝑖
2

(61)

The term 𝑥2𝑖  denotes the second moment of the service time for the 𝑖th flow.

Proof.  For each flow 𝑖, the average response time, 𝑇𝑖, can be decom-
posed into two components: the average waiting time, 𝑊𝑖, and the 
average service time, 1𝜇 , namely, 

𝑇𝑖 = 𝑊𝑖 +
1
𝜇

(62)

The subscript 𝑖 specifies the 𝑖th flow, emphasizing that the waiting 
times may vary between flows. Regarding the average service time, we 
assume in this paper that it is the same for all flows and is given by 1𝜇 . 
We substitute Eq.  (62) into Eq.  (58): 

𝑃avg =
∑𝑛

𝑖=1 𝜌𝑖
∑𝑛

𝑖=1

(

𝜌𝑖
𝜌 𝜇𝑇𝑖

) =
𝜌

𝜇
𝜌
∑𝑛

𝑖=1 𝜌𝑖𝑇𝑖
=

𝜌
𝜇
𝜌
∑𝑛

𝑖=1 𝜌𝑖
(

𝑊𝑖 +
1
𝜇

)

=
𝜌

𝜇
𝜌

(
∑𝑛

𝑖=1 𝜌𝑖𝑊𝑖
)

+ 𝜇
𝜌

(

∑𝑛
𝑖=1 𝜌𝑖

1
𝜇

) =
𝜌

𝜇
𝜌

(
∑𝑛

𝑖=1 𝜌𝑖𝑊𝑖
)

+ 1

(63)

From the conservation law [47], we know that ∑𝑛
𝑖=1 𝜌𝑖𝑊𝑖 remains con-

stant under an M/G/1 system utilizing any work-conserving queueing 
discipline, and it is expressed as: 
𝑛
∑

𝑖=1
𝜌𝑖𝑊𝑖 =

𝜌𝑊0
1 − 𝜌

for 𝜌 < 1 (64)

By substituting the constant value of ∑𝑛
𝑖=1 𝜌𝑖𝑊𝑖 from Eq.  (64) into Eq. 

(63), we obtain:

𝑃avg =
𝜌

𝜇
𝜌

(
∑𝑛

𝑖=1 𝜌𝑖𝑊𝑖
)

+ 1
=

𝜌
𝜇
𝜌

(

𝜌𝑊0
1−𝜌

)

+ 1
=

𝜌(1 − 𝜌)
𝜇𝑊0 + (1 − 𝜌)

■

This shows that the average power, 𝑃avg, can be expressed simply 
as a function of 𝜌 and 𝑊0.

From Theorem  6.1, we know that the average power 𝑃avg can be 
represented as a function of 𝜌 and 𝑊0. Eq.  (61) shows that the term 
𝑊0 is influenced by the second moment of each flow’s service time. 
If we further assume that all flows have the same second moment of 
service time, i.e., 𝑥2𝑖 = 𝑥2 for 𝑖 = 1,… , 𝑛, we can establish the following 
theorem: 

Theorem 6.2.  For an M/G/1 system with 𝑛 flows using any work-
conserving queueing discipline, if each flow has the same first and second 
moments of the service time, then the average power is equivalent to the 
power of a single flow system. Specifically, the average power can then be 
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Fig. 10. The average power of an M/G/1 system with 𝑛 flows using any work-conserving queueing discipline as shown on the left is equivalent to the power of a single-flow 
M/G/1 system where all 𝑛 flows are aggregated into one and served FCFS as shown on the right.
expressed as follows: 
𝑃avg =

𝜌

1 +
𝜌(1+𝐶2

𝑏 )
2(1−𝜌)

(65)

Proof.  If the service times for all flows have identical second moments, 
i.e., 𝑥2𝑖 = 𝑥2 for 𝑖 = 1,… , 𝑛,14 then the average remaining service time, 
𝑊0, can be expressed as follows:

𝑊0 =
𝑛
∑

𝑖=1

𝜆𝑖𝑥2𝑖
2

=
𝑛
∑

𝑖=1

𝜆𝑖𝑥2

2
= 𝑥2

2
⋅

𝑛
∑

𝑖=1
𝜆𝑖

Leading to 

𝑊0 =
𝜆𝑥2
2

(66)

Next, we show that 𝑊0 can be expressed as: 

𝑊0 =
𝜌(1 + 𝐶2

𝑏 )
2𝜇

(67)

This expression is derived from the relationship between the second 
moment and the coefficient of variation squared, 𝐶2

𝑏 , which quantifies 
the variability of service times relative to their mean (𝑥 = 1

𝜇 ). It is 
calculated as:

𝐶2
𝑏 = 𝑥2 − 𝑥2

𝑥2

By multiplying both sides by the denominator and rearranging the 
equation to isolate the second moment, we get:
𝑥2 = 𝑥2 + 𝐶2

𝑏 ⋅ 𝑥2 = (1 + 𝐶2
𝑏 )𝑥

2

Thus, the second moments 𝑥2 can be related to the service time coeffi-
cient of variation squared 𝐶2

𝑏  as: 

𝑥2 = (1 + 𝐶2
𝑏 )

1
𝜇2

(68)

Substituting Eq.  (68) into the equation for 𝑊0 (Eq.  (66)), we get:

𝑊0 =
𝜆𝑥2
2

= 𝜆
2
(1 + 𝐶2

𝑏 )
1
𝜇2

=
𝜌(1 + 𝐶2

𝑏 )
2𝜇

This is Eq.  (67), which expresses 𝑊0 in terms of 𝐶2
𝑏 , 𝜇, and 𝜌. We can 

then rewrite Eq.  (60) for 𝑃avg as:

𝑃avg =
𝜌(1 − 𝜌)

𝜇𝑊0 + (1 − 𝜌)
=

𝜌(1 − 𝜌)

𝜇 ⋅
𝜌(1+𝐶2

𝑏 )
2𝜇 + (1 − 𝜌)

=
𝜌

𝜌(1+𝐶2
𝑏 )

2(1−𝜌) + 1
■

14 In an M/M/1 system with exponentially distributed service times, if all 
flows have the same mean service time (equal first moment), their second 
moments will also be equal. This is a direct consequence of the fact that the 
exponential distribution is fully characterized by its mean—once the mean is 
known, all other moments are determined. For an exponential distribution, the 
mean is 1  and the second moment is 2 .
𝜇 𝜇2

12 
Thus, we have proven Eq.  (65). In addition, this expression for 𝑃avg is 
the same as the expression for the power of a single flow in an M/G/1 
system, as given in Eq.  (3) in Section 2.

Theorem  6.2 can be interpreted as shown in Fig.  10, which demon-
strates that the average power for an M/G/1 system with multiple flows 
using any work-conserving queueing discipline, is equivalent to the 
power of a single-flow system where all 𝑛 flows are combined into one 
flow based on FCFS. The power of a single flow follows the definition 
provided in Eq.  (2) [5,7]. This equivalence means that the performance 
of a single-server system with multiple flows remains unaffected by 
the specific queueing discipline used, provided it is work-conserving 
and the first and second moments of the service time are the same 
for all flows. As long as the queueing discipline is work-conserving, 
even if the order in which flows are processed changes, the system’s 
overall performance in terms of average power will remain unchanged. 
Consequently, the average power in a work-conserving system with 
multiple flows is equal to the power in a single-flow system.

6.2. Average power optimization

Now we turn our attention to the optimization of the average power 
for a work-conserving system of 𝑛 flows, with each flow having the 
same first and second moments of service time. According to Theorem 
6.2, the average power of a multiple-flow system can be equated to the 
power of a single-flow system. Therefore, optimizing the average power 
is equivalent to optimizing the power of a single-flow system. Hence, 
the only factor in affecting the optimization of the average power is the 
total amount of traffic entering the system.

To determine this optimal level of system utilization to maximize 
the power of a single-flow system, we refer to the findings in [5,7], as 
outlined in Section 2. According to this study, the optimal traffic load, 
𝜌∗, for a single flow M/G/1 system that achieves the best performance 
in terms of power is given by Eq.  (4), namely, 

𝜌∗ = 1

1 +

√

1+𝐶2
𝑏

2

(69)

This identifies the ideal utilization factor for a single-flow system that 
balances system load with response time and is tailored to the specific 
variability of the input flows’ service times. Combining Theorem  6.2 
and the optimal result of a single flow represented by Eq.  (69), we have 
established the following theorem: 

Theorem 6.3.  An M/G/1 system with any work-conserving queueing 
discipline, where all flows have identical first and second moments of service 
time, achieves its optimal average power, 𝑷 ∗

𝐚𝐯𝐠, when: 

𝜌∗ =
𝑛
∑

𝑖=1
𝜌𝑖 =

1

1 +

√

1+𝐶2
𝑏

(70)
2
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The system’s optimum average power is: 

𝑃 ∗
𝐚𝐯𝐠 =

2

(
√

2 +
√

1 + 𝐶2
𝑏 )

2
(71)

Additionally, we have the following corollary for the specific
M/M/1 system where 𝐶2

𝑏 = 1:

Corollary 6.1.  When the M/G/1 system of Theorem  6.3 is an M/M/1
system15 (where 𝐶2

𝑏 = 1), then optimal average power is achieved when: 

𝜌∗ =
𝑛
∑

𝑖=1
𝜌𝑖 =

1
2

(72)

The optimal average power is: 

𝑃 ∗
𝐚𝐯𝐠 =

1
4

(73)

Eq.  (72) and Eq.  (73) are the same as the well-known single flow 
optimal power result for M/M/1 as in [5,7]. These results are valuable 
for system controllers and can guide the design of congestion control 
strategies, as they demonstrate that optimizing average power as the 
system performance hinges solely on the effective management of total 
system utilization.

7. Summary

This paper introduced and optimized three power-based perfor-
mance metrics–individual power, sum of powers, and average power–
for multi-flow systems, explicitly solving for the optimum values of 
the utilization factors and powers to address the competing goals of 
increasing throughput and reducing delay from different viewpoints. 
We analyzed and optimized these metrics within an M/M/1 system, 
considering two common queueing disciplines: First-Come, First-Served 
(FCFS) and Head-of-Line (HOL). Since queueing disciplines in multi-
flow systems influence each flow’s response time as well as perfor-
mance in terms of power, we examined both the upper (HOL) and 
lower (FCFS) bounds of flow priority discrimination across all work-
conserving queueing disciplines in the context of power optimization.

In Section 4, we introduced our first multi-flow performance metric,
individual power, which focuses on the end-to-end perspective and 
is denoted by 𝑃𝑖 for the 𝑖th flow. This metric, calculated as 𝑃𝑖 =

𝜌𝑖
𝜇𝑇𝑖
, 

was optimized singly and jointly for each flow. The convergent optimal 
operating points resulting from joint optimization under both FCFS and 
HOL are summarized in Table  1.

In Section 5, we introduced our second performance metric, called
sum of power, which takes an overall system perspective and is 
denoted by 𝑃sum =

∑𝑛
𝑖=1 𝑃𝑖. We identified the operating points of flow 

utilizations that maximize this performance metric under both FCFS 
and HOL queueing disciplines. Surprisingly, the optimum sum of power 
for HOL is achieved under equal utilization factors for each flow. The 
optimization results for this metric are summarized in Table  2.

In Section 6, we proposed our third performance metric, called
average power, which is also based on an overall system perspective 
and is denoted by 𝑃avg =

∑𝑛
𝑖=1 𝜌𝑖

∑𝑛
𝑖=1

( 𝜌𝑖
𝜌 𝜇𝑇𝑖

) . Applying the conservation 
law [47] to this metric, we discovered that optimizing it is equivalent 
to optimizing a single flow, as detailed in Theorem Theorem  6.2. This 
result is applicable not only to M/M/1 systems but also to the broader 
class of M/G/1 systems.

15 Note that in an M/M/1 system, the service time is exponentially dis-
tributed. Therefore, if the first moment is the same across flows, we conclude 
that their second moments will also be the same.
13 
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Appendix A. Proof of Eq.  (51)

To prove Eq.  (51), we first demonstrate that each flow’s utilization is 
equal when the sum of powers is maximized. Then, we find the optimal 
utilization for each flow and show Eq.  (52) and Eq.  (53).

Eq.  (14) provides the individual power of flow 𝑖. Thus, the sum 
of the individual powers is: 𝑃sum =

∑𝑛
𝑖=1 𝜌𝑖(1 − 𝜎𝑖−1)(1 − 𝜎𝑖), where 

𝜎𝑖 =
∑𝑖

𝑗=1 𝜌𝑗 . When aiming to optimize the sum of individual power 
for all flows in a system, we encounter a system of 𝑛 equations. Each 
equation emerges from the partial differentiation of the sum of power 
with respect to each flow’s utilization, 𝜌𝑖. We first show in step 1 below 
that each partial differentiation equation can be expressed as16: 

𝜕
𝜕𝜌𝑖

𝑃sum = 𝜕
𝜕𝜌𝑖

𝑛
∑

𝑗=1
𝜌𝑗 (1 − 𝜎𝑗−1)(1 − 𝜎𝑗 )

= (1 − 𝜎𝑛 − 𝜌𝑖)(1 − 𝜎𝑛 + 𝜌𝑖) for 𝑖 = 1,… , 𝑛

(A.1)

Then in step 2, we use Eq.  (A.1), set it to zero for each 𝑖 = 1,… , 𝑛, and 
solve the 𝑛 equations collectively (assuming the total utilization 𝜌 < 1) 
to find the effective critical point, which is the optimized utilization 
operating point:

𝜌∗𝑖 = 1
𝑛 + 1

for 𝑖 = 1,… , 𝑛

Step 1: Prove the Partial Differentiation Equation, Eq.  (A.1)
We now prove the partial differentiation equation (Eq.  (A.1)) by induc-
tion:
Base Case (𝑛 = 2):

From Eq.  (48), the sum of individual powers when 𝑛 = 2 is:

𝑃sum =
2
∑

𝑖=1
𝜌𝑖(1 − 𝜎𝑖−1)(1 − 𝜎𝑖)

= 𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2)

When optimizing the sum of powers with respect to 𝜌1 and 𝜌2 simulta-
neously, we have a system of two equations:
{ 𝜕

𝜕𝜌1
𝑃sum = 𝜕

𝜕𝜌1
(𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2))

𝜕
𝜕𝜌2

𝑃sum = 𝜕
𝜕𝜌2

(𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2))

The first equation:
𝜕
𝜕𝜌1

𝑃sum = 𝜕
𝜕𝜌1

(𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2))

= 1 − 2𝜌1 + 𝜌2(−(1 − 𝜌1) − (1 − 𝜌1 − 𝜌2))

= 1 − 2𝜌1 − 𝜌2(1 − 2𝜌1) − 𝜌2(1 − 𝜌2)

= (1 − 2𝜌1 − 𝜌2)(1 − 𝜌2)

= (1 − 𝜌1 − 𝜌2 − 𝜌1)(1 − 𝜌1 − 𝜌2 + 𝜌1)

= (1 − 𝜎2 − 𝜌1)(1 − 𝜎2 + 𝜌1)

16 We change the summation index in 𝑃sum from 𝑖 to 𝑗 to avoid confusion 
with 𝑖 in 𝜌 .
𝑖
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The second equation:
𝜕
𝜕𝜌2

𝑃sum = 𝜕
𝜕𝜌2

(𝜌1(1 − 𝜌1) + 𝜌2(1 − 𝜌1)(1 − 𝜌1 − 𝜌2))

= (1 − 𝜌1)(1 − 𝜌1 − 2𝜌2)

= (1 − 𝜌1 − 𝜌2 + 𝜌2)(1 − 𝜌1 − 𝜌2 − 𝜌2)

= (1 − 𝜎2 − 𝜌2)(1 − 𝜎2 + 𝜌2)

The two equations match Eq.  (A.1) where 𝑛 = 2: (1−𝜎2 − 𝜌𝑖)(1−𝜎2 + 𝜌𝑖)
for 𝑖 = 1, 2.

Induction Hypothesis:
Suppose the partial differentiation equation (Eq.  (A.1)) works when 

the number of flows 𝑛 is 𝑘:
𝜕
𝜕𝜌𝑖

𝑃sum = 𝜕
𝜕𝜌𝑖

𝑘
∑

𝑗=1
𝜌𝑗 (1 − 𝜎𝑗−1)(1 − 𝜎𝑗 ) = (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘 + 𝜌𝑖) for 𝑖 = 1, 2, .., 𝑘

Induction Step:
We want to show that the equation also works for the number of 

flows 𝑘 + 1:

𝜕
𝜕𝜌𝑖

𝑃sum = 𝜕
𝜕𝜌𝑖

𝑘+1
∑

𝑗=1
𝜌𝑗 (1−𝜎𝑗−1)(1−𝜎𝑗 ) = (1−𝜎𝑘+1−𝜌𝑖)(1−𝜎𝑘+1+𝜌𝑖) for 𝑖 = 1, 2, .., 𝑘, 𝑘+1

Here’s the computation:

𝜕
𝜕𝜌𝑖

𝑃sum = 𝜕
𝜕𝜌𝑖

𝑘+1
∑

𝑗=1
𝜌𝑗 (1 − 𝜎𝑗−1)(1 − 𝜎𝑗 )

= 𝜕
𝜕𝜌𝑖

[ 𝑘
∑

𝑗=1
𝜌𝑗 (1 − 𝜎𝑗−1)(1 − 𝜎𝑗 ) + 𝜌𝑘+1(1 − 𝜎𝑘)(1 − 𝜎𝑘+1)

]

= (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘 + 𝜌𝑖) + 𝜌𝑘+1
𝜕
𝜕𝜌𝑖

[(1 − 𝜎𝑘)(1 − 𝜎𝑘+1)]

= (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘 + 𝜌𝑖) + 𝜌𝑘+1[−(1 − 𝜎𝑘+1) − (1 − 𝜎𝑘)]

= (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘 + 𝜌𝑖) − 𝜌𝑘+1[(1 − 𝜎𝑘+1) + (1 − 𝜎𝑘) − 𝜌𝑖 + 𝜌𝑖]

= (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘 + 𝜌𝑖) − 𝜌𝑘+1(1 − 𝜎𝑘 − 𝜌𝑖) − 𝜌𝑘+1(1 − 𝜎𝑘+1 + 𝜌𝑖)

= (1 − 𝜎𝑘 − 𝜌𝑖)(1 − 𝜎𝑘+1 + 𝜌𝑖) − 𝜌𝑘+1[1 − 𝜎𝑘+1 + 𝜌𝑖]

= (1 − 𝜎𝑘 − 𝜌𝑖 − 𝜌𝑘+1)(1 − 𝜎𝑘+1 + 𝜌𝑖)

= (1 − 𝜎𝑘+1 − 𝜌𝑖)(1 − 𝜎𝑘+1 + 𝜌𝑖)

This shows that the equation also works for the number of flows 𝑘+ 1.
Thus, by induction, we have shown that Eq.  (A.1) holds for an 

arbitrary number of flows.
Step 2: Finding the Critical Point

In this step, we demonstrate that the critical point, where the 𝑛
partial differential equations equals zero, is when each flow’s optimum 
utilization 𝜌∗𝑖 = 1

𝑛+1  and the total optimized utilization 𝜌∗ = 𝑛
𝑛+1 .

From step 1, we know that Eq.  (A.1) holds. Now, we set each partial 
differential equation to zero:
𝜕
𝜕𝜌𝑖

𝑃sum = (1 − 𝜎𝑛 − 𝜌𝑖)(1 − 𝜎𝑛 + 𝜌𝑖) = 0 for 𝑖 = 1, 2,… , 𝑛

This implies that either:

(1 − 𝜎𝑛 − 𝜌𝑖) = 0 or (1 − 𝜎𝑛 + 𝜌𝑖) = 0 for 𝑖 = 1, 2,… , 𝑛

We now discuss each case:

• (1 − 𝜎𝑛 + 𝜌𝑖)
?
= 0:

If (1−𝜎𝑛+𝜌𝑖) = 0, then 𝜎𝑛 = 1+𝜌𝑖. This contradicts to the constraint 
that 𝜎𝑛 =

∑𝑛
𝑗=1 𝜌𝑗 < 1 because there must be at least one flow 

with 𝜌𝑖 > 0. If all 𝜌𝑖 values were 0, then 𝜎𝑛 would be zero, not 1 
as indicated by the equation. Therefore, this scenario is not valid.

• (1 − 𝜎𝑛 − 𝜌𝑖)
?
= 0:

For (1 − 𝜎𝑛 − 𝜌𝑖) = 0, we have 

𝜌 = 1 − 𝜎 for 𝑖 = 1, 2,… , 𝑛 (A.2)
𝑖 𝑛
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Summing all equations, we get:
𝑛
∑

𝑖=1
𝜌𝑖 =

𝑛
∑

𝑖=1
(1 − 𝜎𝑛),

From Eq.  (A.2) and since 𝜎𝑛 =
∑𝑛

𝑖=1 𝜌𝑖, the above equation can be 
expressed as:
𝜎𝑛 = 𝑛(1 − 𝜎𝑛)

Thus, we compute 𝜎𝑛 as: 

𝜎𝑛 =
𝑛

𝑛 + 1
(A.3)

Since 𝜎𝑛 = 𝜌, this shows that the optimum system utilization 𝜌∗
when sum of individual power is maximized is: 
𝜌∗ = 𝑛

𝑛 + 1
(A.4)

as was to be shown. As 𝑛 < 𝑛 + 1, this implies 𝜌 < 1 for finite 𝑛, 
thereby confirming that this scenario is valid.

With 𝜎𝑛 computed, we now determine 𝜌𝑖 using Eq.  (A.2) and
Eq.  (A.3):

𝜌𝑖 = 1 − 𝜎𝑛 = 1 − 𝑛
𝑛 + 1

= 1
𝑛 + 1

for 𝑖 = 1, 2,… , 𝑛

Thus, we have also shown that:

𝜌∗𝑖 = 1
𝑛 + 1

for 𝑖 = 1, 2,… , 𝑛 ■

Data availability

No data was used for the research described in the article.

References

[1] U. Cisco, Cisco annual internet report (2018–2023) white paper, Cisco: San Jose, 
CA, USA 10 (1) (2020) 1–35.

[2] I. Sandvine, Global internet phenomena report, North Am. Lat. Am. (2024).
[3] A. Giessler, J. Haenle, A. König, E. Pade, Free buffer allocation—An investigation 

by simulation, Comput. Networks ( 1976) 2 (3) (1978) 191–208.
[4] L. Kleinrock, On flow control in computer networks, in: Proceedings of the 

International Conference on Communications, Vol. 2, 1978, pp. 27–2.
[5] L. Kleinrock, Power and deterministic rules of thumb for probabilistic prob-

lems in computer communications, in: ICC’79; International Conference on 
Communications, Vol. 3, 1979, pp. 43–1.

[6] R. Gail, L. Kleinrock, An invariant property of computer network power, in: 
Proceedings of the International Conference on Communications, 1981, pp. 
63.1.1–63.1.5.

[7] L. Kleinrock, Internet congestion control using the power metric: Keep the pipe 
just full, but no fuller, Ad Hoc Networks 80 (2018) 142–157.

[8] X. Xiao, L.M. Ni, Internet QoS: A big picture, IEEE Netw. 13 (2) (1999) 8–18.
[9] Z. Wang, Internet QoS: architectures and mechanisms for quality of service, 

Morgan Kaufmann, 2001.
[10] U. Black, Voice over IP, Prentice-Hall, Inc., 1999.
[11] B. Goode, Voice over internet protocol (VoIP), Proc. IEEE 90 (9) (2002) 

1495–1517.
[12] K. Nichols, S. Blake, F. Baker, D.L. Black, Definition of the Differentiated Services 

Field (DS Field) in the IPv4 and IPv6 Headers, Request for Comments RFC 
2474, Internet Engineering Task Force, 1998, Available at https://www.rfc-
editor.org/rfc/rfc2474.

[13] S. Blake, D. Black, M.A. Carlson, E. Davies, Z. Wang, W. Weiss, An Archi-
tecture for Differentiated Services, Request for Comments RFC 2475, Internet 
Engineering Task Force, 1998, Available at https://www.rfc-editor.org/rfc/
rfc2475.

[14] R. Braden, D. Clark, S. Shenker, Integrated Services in the Internet Architecture: 
an Overview, Request for Comments RFC 1633, Internet Engineering Task Force, 
1994, Available at https://www.rfc-editor.org/rfc/rfc1633.

[15] L. Kleinrock, Queueing Systems, Volume II: Computer Applications, Wiley New 
York, 1976.

[16] A. Cobham, Priority assignment in waiting line problems, J. Oper. Res. Soc. Am. 
2 (1) (1954) 70–76.

[17] N. Jaiswal, Preemptive resume priority queue, Oper. Res. 9 (5) (1961) 732–742.
[18] V. Jacobson, Congestion avoidance and control, ACM SIGCOMM Comput. 

Commun. Rev. 18 (4) (1988) 314–329.

http://refhub.elsevier.com/S1389-1286(25)00121-5/sb1
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb1
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb1
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb2
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb3
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb3
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb3
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb4
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb4
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb4
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb5
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb5
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb5
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb5
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb5
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb6
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb6
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb6
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb6
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb6
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb7
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb7
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb7
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb8
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb9
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb9
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb9
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb10
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb11
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb11
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb11
https://www.rfc-editor.org/rfc/rfc2474
https://www.rfc-editor.org/rfc/rfc2474
https://www.rfc-editor.org/rfc/rfc2474
https://www.rfc-editor.org/rfc/rfc2475
https://www.rfc-editor.org/rfc/rfc2475
https://www.rfc-editor.org/rfc/rfc2475
https://www.rfc-editor.org/rfc/rfc1633
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb15
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb15
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb15
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb16
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb16
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb16
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb17
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb18
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb18
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb18


M.-J.C. Tsai and L. Kleinrock Computer Networks 263 (2025) 111153 
[19] V. Jacobson, Modified TCP congestion avoidance algorithm, 1990.
[20] M. Allman, V. Paxson, W. Stevens, RFC2581: TCP congestion control, 1999.
[21] L.S. Brakmo, S.W. O’Malley, L.L. Peterson, TCP vegas: New techniques for 

congestion detection and avoidance, in: Proceedings of the Conference on 
Communications Architectures, Protocols and Applications, 1994, pp. 24–35.

[22] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant, ACM 
SIGOPS Oper. Syst. Rev. 42 (5) (2008) 64–74.

[23] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. 
Sengupta, M. Sridharan, Data center tcp (dctcp), in: Proceedings of the ACM 
SIGCOMM 2010 Conference, 2010, pp. 63–74.

[24] R. Mittal, V.T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, 
Y. Wang, D. Wetherall, D. Zats, TIMELY: RTT-based congestion control for the 
datacenter, ACM SIGCOMM Comput. Commun. Rev. 45 (4) (2015) 537–550.

[25] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, V. Jacobson, BBR: 
congestion-based congestion control, ACM Queue 14 (5) (2016) 20–53.

[26] Y. Li, R. Miao, H.H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang, F. Kelly, 
M. Alizadeh, M. Yu, HPCC: high precision congestion control, in: J. Wu, W. Hall 
(Eds.), Proceedings of the ACM Special Interest Group on Data Communication, 
SIGCOMM 2019, Beijing, China, August 19-23, 2019, ACM, 2019, pp. 44–58.

[27] G. Kumar, N. Dukkipati, K. Jang, H.M. Wassel, X. Wu, B. Montazeri, Y. Wang, 
K. Springborn, C. Alfeld, M. Ryan, et al., Swift: Delay is simple and effective for 
congestion control in the datacenter, in: Proceedings of the Annual Conference 
of the ACM Special Interest Group on Data Communication on the Applications, 
Technologies, Architectures, and Protocols for Computer Communication, 2020, 
pp. 514–528.

[28] K. Ramakrishnan, S. Floyd, A Proposal to Add Explicit Congestion Notification 
(ECN) to IP, Request for Comments RFC 2481, Internet Engineering Task Force, 
1999, Available at https://datatracker.ietf.org/doc/rfc2481/.

[29] D. Katabi, M. Handley, C. Rohrs, Congestion control for high bandwidth-delay 
product networks, in: Proceedings of the 2002 Conference on Applications, 
Technologies, Architectures, and Protocols for Computer Communications, 2002, 
pp. 89–102.

[30] S. Floyd, V. Jacobson, Random early detection gateways for congestion 
avoidance,  IEEE/ ACM Trans. Netw. 1 (4) (1993) 397–413.
15 
[31] K.M. Nichols, V. Jacobson, A. McGregor, J.R. Iyengar, Controlled delay active 
queue management, RFC 8289 (2018) 1–25.

[32] G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, ACM SIGCOMM 
Comput. Commun. Rev. 34 (4) (2004) 281–292.

[33] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley New York, 1975.
[34] L. Kleinrock, Message delay in communication nets with storage (Ph.D. thesis), 

Massachusetts Institute of Technology, 1963.
[35] T. Stockhammer, Dynamic adaptive streaming over HTTP– standards and design 

principles, in: Proceedings of the Second Annual ACM Conference on Multimedia 
Systems, 2011, pp. 133–144.

[36] A. Zambelli, IIS smooth streaming technical overview, Microsoft Corp. 3 (40) 
(2009).

[37] Adobe, Adobe HTTP dynamic streaming (HDS), 2016.
[38] R. Pantos, W. May, Apple inc.,‘‘http live streaming,’’, 2013.
[39] A. Bentaleb, B. Taani, A.C. Begen, C. Timmerer, R. Zimmermann, A survey on 

bitrate adaptation schemes for streaming media over HTTP, IEEE Commun. Surv. 
& Tutorials 21 (1) (2018) 562–585.

[40] J. Nash, Non-cooperative games, Ann. Math. (1951) 286–295.
[41] G. Hardin, The tragedy of the commons: the population problem has no technical 

solution; it requires a fundamental extension in morality., Science 162 (3859) 
(1968) 1243–1248.

[42] R. Morris, TCP behavior with many flows, in: Proceedings 1997 International 
Conference on Network Protocols, IEEE, 1997, pp. 205–211.

[43] L. Qiu, Y. Zhang, S. Keshav, On individual and aggregate TCP performance, 
in: Proceedings. Seventh International Conference on Network Protocols, IEEE, 
1999, pp. 203–212.

[44] L. Qiu, Y. Zhang, S. Keshav, Understanding the performance of many TCP flows, 
Comput. Netw. 37 (3–4) (2001) 277–306.

[45] K.K. Ramakrishnan, R. Jain, A binary feedback scheme for congestion avoidance 
in computer networks, ACM Trans. Comput. Syst. ( TOCS) 8 (2) (1990) 158–181.

[46] D. Lin, R. Morris, Dynamics of random early detection, in: Proceedings of the 
ACM SIGCOMM’97 Conference on Applications, Technologies, Architectures, and 
Protocols for Computer Communication, 1997, pp. 127–137.

[47] L. Kleinrock, A conservation law for a wide class of queueing disciplines, Nav. 
Res. Logist. Q. 12 (2) (1965) 181–192.

http://refhub.elsevier.com/S1389-1286(25)00121-5/sb19
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb20
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb21
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb21
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb21
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb21
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb21
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb22
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb22
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb22
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb23
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb23
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb23
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb23
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb23
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb24
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb24
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb24
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb24
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb24
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb25
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb25
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb25
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb26
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb27
https://datatracker.ietf.org/doc/rfc2481/
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb29
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb30
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb30
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb30
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb31
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb31
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb31
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb32
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb32
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb32
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb33
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb34
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb34
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb34
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb35
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb35
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb35
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb35
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb35
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb36
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb36
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb36
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb37
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb38
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb39
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb39
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb39
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb39
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb39
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb40
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb41
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb41
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb41
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb41
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb41
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb42
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb42
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb42
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb43
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb43
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb43
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb43
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb43
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb44
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb44
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb44
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb45
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb45
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb45
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb46
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb46
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb46
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb46
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb46
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb47
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb47
http://refhub.elsevier.com/S1389-1286(25)00121-5/sb47

	Computer network optimization using the power metric for multiple flows: Part I
	Introduction
	Background
	The Single-Server Queueing System
	The Power Metric
	The Maximal Power Operating Point

	Model for Multiple Flows
	Multiple Flows System
	Assumptions and Simplification

	Performance Optimization Metric 1: Individual Power, 
	Description of the End-to-end Viewpoint
	Definition
	Singly Optimizing Individual Power
	FCFS
	HOL

	Jointly Optimizing Individual Power
	FCFS
	HOL

	Comparison of Joint Individual Power Optimization Results for FCFS and HOL

	Performance Optimization Metric 2: Sum of Individual Powers, 
	Description of the System-wide Viewpoint
	Definition
	Optimizing Sum of Individual Powers, P Sum of Power
	FCFS
	HOL

	Comparison of Sum of Powers Optimization Results for FCFS and HOL

	Performance Optimization Metric 3: Average Power, 
	Definition
	Average Power Optimization

	Summary
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of eq:ch5-hol-optimal-power-indi-util-outside-thm
	Data availability
	References


